Este es un revisión de humanos Cdc2 usando Cdc2 anticuerpos en todos los métodos . Con esto se pretende ayudar a los visitantes de labome a encontrar los Cdc2 anticuerpos más adecuados.
Cdc2 sinónimo: CDC2; CDC28A; P34CDC2; cyclin-dependent kinase 1; cell cycle controller CDC2; cell division control protein 2 homolog; cell division cycle 2, G1 to S and G2 to M; cell division protein kinase 1; p34 protein kinase

Knockout validation
Santa Cruz Biotechnology
ratón monoclonal (17)
  • western blot knockout validation; ratón; fig 2
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot knockout validation on ratón samples (fig 2). Proc Natl Acad Sci U S A (2012) ncbi
Santa Cruz Biotechnology
ratón monoclonal (17)
  • inmunoprecipitación; humanos; fig 3a
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54AC) was used in inmunoprecipitación on humanos samples (fig 3a). Proc Natl Acad Sci U S A (2018) ncbi
ratón monoclonal (17)
  • western blot; humanos; fig 6d
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on humanos samples (fig 6d). Nat Commun (2017) ncbi
ratón monoclonal (17)
  • western blot; humanos; 1:300; fig s4j
Santa Cruz Biotechnology Cdc2 anticuerpos (SantaCruz, sc-54) was used in western blot on humanos samples at 1:300 (fig s4j). Sci Adv (2017) ncbi
ratón monoclonal (17)
  • western blot; humanos; fig 2a
Santa Cruz Biotechnology Cdc2 anticuerpos (santa, 17) was used in western blot on humanos samples (fig 2a). Oncogene (2017) ncbi
ratón monoclonal (AN21.2)
  • western blot; ratón; fig s3
Santa Cruz Biotechnology Cdc2 anticuerpos (santa cruz, sc-53219) was used in western blot on ratón samples (fig s3). Sci Rep (2017) ncbi
ratón monoclonal (Y100.4)
  • western blot; fission yeast; fig 3f
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, Y100.4) was used in western blot on fission yeast samples (fig 3f). Nature (2017) ncbi
ratón monoclonal (17)
  • immunohistochemistry - paraffin section; rata; 1:1000; fig st5
  • immunohistochemistry - paraffin section; humanos; 1:1000; fig st5
  • immunohistochemistry - paraffin section; ratón; 1:1000; fig st5
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in immunohistochemistry - paraffin section on rata samples at 1:1000 (fig st5), in immunohistochemistry - paraffin section on humanos samples at 1:1000 (fig st5) and in immunohistochemistry - paraffin section on ratón samples at 1:1000 (fig st5). J Toxicol Pathol (2017) ncbi
ratón monoclonal (AN21.2)
  • western blot; humanos; 1:200; fig 5a
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-53219) was used in western blot on humanos samples at 1:200 (fig 5a). Oncotarget (2017) ncbi
ratón monoclonal (B-5)
  • western blot; humanos; 1:1000; fig 4a
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-137035) was used in western blot on humanos samples at 1:1000 (fig 4a). Exp Ther Med (2016) ncbi
ratón monoclonal (B-5)
  • inmunoprecipitación; humanos; 1:1000; fig 2e
  • western blot; humanos; 1:1000; fig 2a,2b,2c
  • western blot; ratón; 1:1000; fig 6e
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-137035) was used in inmunoprecipitación on humanos samples at 1:1000 (fig 2e), in western blot on humanos samples at 1:1000 (fig 2a,2b,2c) and in western blot on ratón samples at 1:1000 (fig 6e). Nat Commun (2017) ncbi
ratón monoclonal (17)
  • western blot; ratón; fig 6a
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on ratón samples (fig 6a). Nat Commun (2016) ncbi
ratón monoclonal (17)
  • western blot; humanos; 1:500; fig 2c
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-54) was used in western blot on humanos samples at 1:500 (fig 2c). Toxicol Appl Pharmacol (2016) ncbi
ratón monoclonal (F-10)
  • western blot; humanos; fig 3
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-166135) was used in western blot on humanos samples (fig 3). PLoS ONE (2016) ncbi
ratón monoclonal (POH-1)
  • otro; humanos; fig st1
Santa Cruz Biotechnology Cdc2 anticuerpos (SCBT, POH1) was used in otro on humanos samples (fig st1). Mol Cell Proteomics (2016) ncbi
ratón monoclonal (17)
  • western blot; humanos; 1:750; fig 4
Santa Cruz Biotechnology Cdc2 anticuerpos ((Santa Cruz, SC-54) was used in western blot on humanos samples at 1:750 (fig 4). Cell Rep (2015) ncbi
ratón monoclonal (POH-1)
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-51578) was used in western blot on humanos samples (fig 4). Oxid Med Cell Longev (2015) ncbi
ratón monoclonal (17)
  • western blot; humanos; fig 3
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on humanos samples (fig 3). BMC Cancer (2015) ncbi
ratón monoclonal (AN21.2)
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Cdc2 anticuerpos (santa Cruz, sc-53219) was used in western blot on humanos samples (fig 4). PLoS ONE (2015) ncbi
ratón monoclonal (17)
  • western blot; humanos
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, SC-54) was used in western blot on humanos samples . Toxicol Appl Pharmacol (2015) ncbi
ratón monoclonal (17)
  • western blot; humanos; 1:200; fig 1e
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on humanos samples at 1:200 (fig 1e). Oncotarget (2015) ncbi
ratón monoclonal (17)
  • immunohistochemistry - free floating section; Domestic guinea pig; 1:600; fig 3
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, SC-54) was used in immunohistochemistry - free floating section on Domestic guinea pig samples at 1:600 (fig 3). Neuroscience (2015) ncbi
ratón monoclonal (F-10)
  • inmunohistoquímica; humanos
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-166135) was used in inmunohistoquímica on humanos samples . BMC Cancer (2014) ncbi
ratón monoclonal (AN21.2)
  • western blot; humanos; fig s2f
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa, sc-53219) was used in western blot on humanos samples (fig s2f). Cell (2014) ncbi
ratón monoclonal (C-9)
  • western blot; humanos
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-137034) was used in western blot on humanos samples . Cancer Res (2014) ncbi
ratón monoclonal (17)
  • western blot; humanos
  • western blot; ratón
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, 17) was used in western blot on humanos samples and in western blot on ratón samples . Oncogene (2015) ncbi
ratón monoclonal (17)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on humanos samples at 1:500. Int J Biochem Cell Biol (2014) ncbi
ratón monoclonal (17)
  • western blot; ratón
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on ratón samples . PLoS ONE (2014) ncbi
ratón monoclonal (17)
  • western blot; humanos; fig 2d
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa, sc-54) was used in western blot on humanos samples (fig 2d). J Biol Chem (2014) ncbi
ratón monoclonal (17)
  • western blot; humanos
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot on humanos samples . Mol Oncol (2014) ncbi
ratón monoclonal (17)
  • western blot; ratón
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-54) was used in western blot on ratón samples . Cell Cycle (2013) ncbi
ratón monoclonal (17)
  • western blot knockout validation; ratón; fig 2
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz, sc-54) was used in western blot knockout validation on ratón samples (fig 2). Proc Natl Acad Sci U S A (2012) ncbi
ratón monoclonal (17)
  • western blot; humanos
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-54) was used in western blot on humanos samples . Am J Physiol Endocrinol Metab (2011) ncbi
ratón monoclonal (17)
  • western blot; ratón
Santa Cruz Biotechnology Cdc2 anticuerpos (Santa Cruz Biotechnology, sc-54) was used in western blot on ratón samples . Genes Cells (2011) ncbi
Abcam
conejo monoclonal (EPR165)
  • inmunocitoquímica; humanos; fig s5b
  • western blot; humanos; fig s5c
Abcam Cdc2 anticuerpos (Abcam, ab133327) was used in inmunocitoquímica on humanos samples (fig s5b) and in western blot on humanos samples (fig s5c). Science (2019) ncbi
ratón monoclonal (A17)
  • inmunocitoquímica; ratón; 1:100; fig s1i
Abcam Cdc2 anticuerpos (Abcam, A17) was used in inmunocitoquímica on ratón samples at 1:100 (fig s1i). Sci Rep (2019) ncbi
conejo policlonal
  • western blot; ratón; 1:1000; fig 5b
Abcam Cdc2 anticuerpos (Abcam, ab71939) was used in western blot on ratón samples at 1:1000 (fig 5b). Proc Natl Acad Sci U S A (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 2c
Abcam Cdc2 anticuerpos (Abcam, ab47594) was used in western blot on humanos samples (fig 2c). DNA Cell Biol (2016) ncbi
ratón monoclonal (A17)
  • western blot; humanos; fig 2c
Abcam Cdc2 anticuerpos (Abcam, ab18) was used in western blot on humanos samples (fig 2c). DNA Cell Biol (2016) ncbi
ratón monoclonal (A17)
  • western blot; ratón; fig 1
Abcam Cdc2 anticuerpos (Abcam, ab18) was used in western blot on ratón samples (fig 1). Cell Rep (2016) ncbi
conejo monoclonal (YE324)
  • immunohistochemistry - paraffin section; humanos; 1:50; fig 1
Abcam Cdc2 anticuerpos (Abcam, ab32094) was used in immunohistochemistry - paraffin section on humanos samples at 1:50 (fig 1). Arch Gynecol Obstet (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 6
Abcam Cdc2 anticuerpos (Abcam, ab47594) was used in western blot on humanos samples (fig 6). BMC Cancer (2016) ncbi
ratón monoclonal (A17)
  • western blot; humanos; fig 6b
Abcam Cdc2 anticuerpos (Abcam, Ab18) was used in western blot on humanos samples (fig 6b). Oncol Rep (2016) ncbi
ratón monoclonal (Y100.4)
  • inmunoprecipitación; fission yeast; fig 3
Abcam Cdc2 anticuerpos (ABCAM, ab5467) was used in inmunoprecipitación on fission yeast samples (fig 3). PLoS ONE (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 2
Abcam Cdc2 anticuerpos (Abcam, ab47594) was used in western blot on humanos samples (fig 2). Oncotarget (2015) ncbi
ratón monoclonal (Y100.4)
  • western blot; fission yeast; fig 3a
Abcam Cdc2 anticuerpos (Abcam, ab5467) was used in western blot on fission yeast samples (fig 3a). Nucleic Acids Res (2015) ncbi
conejo policlonal
  • western blot; humanos
Abcam Cdc2 anticuerpos (Abcam, ab47594) was used in western blot on humanos samples . Cell Prolif (2015) ncbi
ratón monoclonal (A17)
  • western blot; humanos
Abcam Cdc2 anticuerpos (Abcam, Ab18) was used in western blot on humanos samples . J Virol (2015) ncbi
ratón monoclonal (Y100.4)
  • western blot; fission yeast; 1:1000
Abcam Cdc2 anticuerpos (Abcam, ab5467) was used in western blot on fission yeast samples at 1:1000. Methods Mol Biol (2014) ncbi
ratón monoclonal (A17)
  • western blot; humanos; 1:1,000
Abcam Cdc2 anticuerpos (Abcam, ab18) was used in western blot on humanos samples at 1:1,000. J Clin Invest (2014) ncbi
ratón monoclonal (A17)
  • inmunocitoquímica; humanos; fig 6a
Abcam Cdc2 anticuerpos (Abcam, ab18) was used in inmunocitoquímica on humanos samples (fig 6a). elife (2014) ncbi
conejo policlonal
  • immunohistochemistry - paraffin section; ratón
  • western blot; ratón
Abcam Cdc2 anticuerpos (Abcam, ab71939) was used in immunohistochemistry - paraffin section on ratón samples and in western blot on ratón samples . Dev Biol (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Abcam Cdc2 anticuerpos (Abcam, ab47594) was used in western blot on humanos samples at 1:1000. J Biol Chem (2013) ncbi
ratón monoclonal (A17)
  • western blot; humanos; 1:1000
Abcam Cdc2 anticuerpos (Abcam, ab18) was used in western blot on humanos samples at 1:1000. J Biol Chem (2013) ncbi
Invitrogen
conejo monoclonal (E.658.6)
  • inmunocitoquímica; ratón; 1:50; fig 5b
Invitrogen Cdc2 anticuerpos (Thermo Fisher Scientific, MA5-15062) was used in inmunocitoquímica on ratón samples at 1:50 (fig 5b). Biol Reprod (2018) ncbi
ratón monoclonal (A17.1.1)
  • western blot; humanos; 1:500; fig 3a
Invitrogen Cdc2 anticuerpos (Milipore, MA5-11472) was used in western blot on humanos samples at 1:500 (fig 3a). Clin Exp Ophthalmol (2017) ncbi
ratón monoclonal (A17.1.1)
  • western blot; rata; fig 2
Invitrogen Cdc2 anticuerpos (thermofisher scientific, 11472) was used in western blot on rata samples (fig 2). Oncotarget (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 5
Invitrogen Cdc2 anticuerpos (ThermoFisher Scientific, 44-686G) was used in western blot on humanos samples (fig 5). Biochem Pharmacol (2016) ncbi
ratón monoclonal (A17.1.1)
Invitrogen Cdc2 anticuerpos (Thermo, MS-110-P1) was used . Cell Prolif (2015) ncbi
ratón monoclonal (A17.1.1)
  • inmunoprecipitación; humanos; fig 1
Invitrogen Cdc2 anticuerpos (Lab Vision, A17.1) was used in inmunoprecipitación on humanos samples (fig 1). Cell Cycle (2014) ncbi
ratón monoclonal (A17.1.1)
  • inmunoprecipitación; ratón
  • western blot; ratón; 1:200; fig 3e
Invitrogen Cdc2 anticuerpos (Thermo, A17.1.1) was used in inmunoprecipitación on ratón samples and in western blot on ratón samples at 1:200 (fig 3e). Nat Cell Biol (2014) ncbi
ratón monoclonal (A17.1.1)
  • immunohistochemistry - paraffin section; humanos; 1:500
Invitrogen Cdc2 anticuerpos (NeoMarkers, A17.1.1) was used in immunohistochemistry - paraffin section on humanos samples at 1:500. PLoS ONE (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 6, 7
Invitrogen Cdc2 anticuerpos (Invitrogen, 44686G) was used in western blot on humanos samples at 1:1000 (fig 6, 7). Mol Carcinog (2015) ncbi
conejo policlonal
  • western blot; rata; 1:1,000
Invitrogen Cdc2 anticuerpos (Biosource, 44-686G) was used in western blot on rata samples at 1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
ratón monoclonal (A17)
  • immunohistochemistry - paraffin section; ratón; 1:1000; fig s2
Invitrogen Cdc2 anticuerpos (Invitrogen, 33-1800) was used in immunohistochemistry - paraffin section on ratón samples at 1:1000 (fig s2). Free Radic Biol Med (2010) ncbi
conejo policlonal
Invitrogen Cdc2 anticuerpos (Biosource, 44686G) was used . Gene Expr Patterns (2008) ncbi
Abnova
ratón monoclonal (1A4-1A9)
  • otro; humanos; fig st1
Abnova Cdc2 anticuerpos (Abnova, 1A4-1A9) was used in otro on humanos samples (fig st1). Mol Cell Proteomics (2016) ncbi
Proteintech Group
conejo policlonal
  • western blot; humanos; fig 5
Proteintech Group Cdc2 anticuerpos (proteintech, 19532-1-AP) was used in western blot on humanos samples (fig 5). Oncotarget (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig  3
Proteintech Group Cdc2 anticuerpos (Proteintech, 19532-1-AP) was used in western blot on humanos samples at 1:1000 (fig  3). PLoS ONE (2014) ncbi
R&D Systems
conejo policlonal
  • western blot; humanos
R&D Systems Cdc2 anticuerpos (R&D Systems, AF888) was used in western blot on humanos samples . Oncogene (2013) ncbi
Cell Signaling Technology
conejo monoclonal (10A11)
  • western blot; humanos; fig 5c
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in western blot on humanos samples (fig 5c). J Virol (2018) ncbi
ratón monoclonal (POH1)
  • inmunocitoquímica; humanos; 1:200; fig s4c
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9116) was used in inmunocitoquímica on humanos samples at 1:200 (fig s4c). Nature (2018) ncbi
conejo monoclonal (10A11)
  • inmunocitoquímica; humanos; 1:50; fig s4d
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 4539) was used in inmunocitoquímica on humanos samples at 1:50 (fig s4d). Nature (2018) ncbi
conejo monoclonal (10A11)
  • western blot; ratón; fig 5b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in western blot on ratón samples (fig 5b). Cell Signal (2018) ncbi
conejo monoclonal (10A11)
  • otro; humanos; fig 4c
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in otro on humanos samples (fig 4c). Cancer Cell (2018) ncbi
conejo policlonal
  • western blot; humanos; fig 2e
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111S) was used in western blot on humanos samples (fig 2e). Mol Cell (2018) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 1c
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116P) was used in western blot on humanos samples (fig 1c). Mol Cell (2017) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 3b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples (fig 3b). Gynecol Oncol (2017) ncbi
conejo monoclonal (10A11)
  • western blot; humanos; fig 3b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in western blot on humanos samples (fig 3b). Gynecol Oncol (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 5a
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples (fig 5a). Sci Rep (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 1g
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples (fig 1g). Sci Rep (2016) ncbi
conejo monoclonal (10A11)
  • western blot; humanos; 1:1000; fig st1
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in western blot on humanos samples at 1:1000 (fig st1). Nat Commun (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; 1:2000; fig st1
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples at 1:2000 (fig st1). Nat Commun (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 3a
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples at 1:1000 (fig 3a). Clin Exp Ophthalmol (2017) ncbi
conejo policlonal
  • western blot; ratón; fig s3
Cell Signaling Technology Cdc2 anticuerpos (Cell Signalling, 9111) was used in western blot on ratón samples (fig s3). PLoS Genet (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig s5
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples (fig s5). Arterioscler Thromb Vasc Biol (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 5c
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples (fig 5c). J Proteomics (2017) ncbi
conejo policlonal
  • western blot; ratón; 1:500; fig 3
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on ratón samples at 1:500 (fig 3). Nat Commun (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 5
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9116) was used in western blot on humanos samples (fig 5). J Biol Chem (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 5
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9111) was used in western blot on humanos samples (fig 5). J Biol Chem (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 9
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9111s) was used in western blot on humanos samples (fig 9). EMBO Mol Med (2016) ncbi
conejo monoclonal (10A11)
  • western blot; humanos; 1:1000; fig s2
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539) was used in western blot on humanos samples at 1:1000 (fig s2). Nat Commun (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 3b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples (fig 3b). Oncotarget (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; 1:1000; fig 4
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Tech, 9116) was used in western blot on humanos samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 5
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples (fig 5). Oncotarget (2016) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 1b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples (fig 1b). Biochem Pharmacol (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 1b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111S) was used in western blot on humanos samples (fig 1b). Biochem Pharmacol (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 2
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on humanos samples (fig 2). PLoS Pathog (2015) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; 1:1000; fig 2
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9116) was used in western blot on humanos samples at 1:1000 (fig 2). J Cell Sci (2016) ncbi
conejo policlonal
  • western blot; ratón; 1:500; fig 2
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9114) was used in western blot on ratón samples at 1:500 (fig 2). Nat Commun (2015) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on humanos samples . Oncogene (2016) ncbi
conejo policlonal
  • western blot; ratón; 1:1000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on ratón samples at 1:1000. Development (2015) ncbi
conejo policlonal
  • inmunoprecipitación; fission yeast; fig 3
Cell Signaling Technology Cdc2 anticuerpos (Cell Signalling, 9111S) was used in inmunoprecipitación on fission yeast samples (fig 3). PLoS ONE (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 4b
Cell Signaling Technology Cdc2 anticuerpos (Cell Signalling, 9111) was used in western blot on humanos samples (fig 4b). Mol Cell Proteomics (2015) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 2
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9116) was used in western blot on humanos samples (fig 2). Oncotarget (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 7
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, CS9111) was used in western blot on humanos samples (fig 7). PLoS ONE (2015) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111s) was used in western blot on humanos samples . Biol Open (2015) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 7
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9116) was used in western blot on humanos samples (fig 7). Nat Neurosci (2015) ncbi
conejo monoclonal (10A11)
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 4539) was used in western blot on humanos samples . PLoS ONE (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on humanos samples at 1:1000. Cancer Lett (2015) ncbi
conejo monoclonal (10A11)
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 4539) was used in western blot on humanos samples . DNA Repair (Amst) (2015) ncbi
conejo policlonal
  • western blot; humanos; fig s2f
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9114) was used in western blot on humanos samples (fig s2f). Cell (2014) ncbi
conejo policlonal
  • western blot; humanos; fig s9
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples (fig s9). Nat Commun (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 2d
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples at 1:1000 (fig 2d). Mol Oncol (2015) ncbi
conejo policlonal
  • western blot; ratón
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9114) was used in western blot on ratón samples . Biochim Biophys Acta (2015) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on humanos samples . Cancer Res (2014) ncbi
conejo policlonal
  • inmunocitoquímica; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in inmunocitoquímica on humanos samples . Cancer Res (2014) ncbi
conejo policlonal
  • western blot; ratón
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on ratón samples and in western blot on humanos samples . Oncogene (2015) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9114) was used in western blot on humanos samples . elife (2014) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples . Mol Cell Proteomics (2014) ncbi
conejo policlonal
  • western blot; fission yeast; 1:1000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on fission yeast samples at 1:1000. Methods Mol Biol (2014) ncbi
conejo policlonal
  • western blot; African green monkey
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on African green monkey samples . J Biol Chem (2014) ncbi
conejo policlonal
  • western blot; common platanna; 1:2,000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 9111) was used in western blot on common platanna samples at 1:2,000. J Biol Chem (2014) ncbi
conejo monoclonal (10A11)
  • western blot; humanos; fig 2d
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 4539S) was used in western blot on humanos samples (fig 2d). J Biol Chem (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9114) was used in western blot on humanos samples at 1:1000. PLoS ONE (2014) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology Inc, #9114) was used in western blot on humanos samples (fig 3). J Pharmacol Sci (2014) ncbi
conejo monoclonal (10A11)
  • western blot; ratón; fig 4
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 4539S) was used in western blot on ratón samples (fig 4). PLoS Pathog (2014) ncbi
ratón monoclonal (POH1)
  • western blot; humanos; fig 4e
Cell Signaling Technology Cdc2 anticuerpos (Cell signaling, 9116) was used in western blot on humanos samples (fig 4e). Int J Oncol (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling, 9111) was used in western blot on humanos samples at 1:1000. Lab Invest (2013) ncbi
conejo policlonal
  • western blot; ratón; fig 4
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Tech, 9111) was used in western blot on ratón samples (fig 4). Proc Natl Acad Sci U S A (2012) ncbi
conejo monoclonal (10A11)
  • western blot; humanos
Cell Signaling Technology Cdc2 anticuerpos (Cell Signaling Technology, 4539) was used in western blot on humanos samples . Mol Cancer Res (2012) ncbi
BD Biosciences
ratón monoclonal (44/Cdk1/Cdc2)
  • western blot; humanos; fig 3a
BD Biosciences Cdc2 anticuerpos (BD Bioscience, 612306) was used in western blot on humanos samples (fig 3a). PLoS Pathog (2017) ncbi
ratón monoclonal (44/Cdk1/Cdc2)
  • western blot; humanos; fig 4a
BD Biosciences Cdc2 anticuerpos (BD Bioscience, 612306) was used in western blot on humanos samples (fig 4a). Int J Mol Sci (2016) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • inmunoprecipitación; ratón; 1:1000; fig s12h
  • western blot; ratón; 1:1000; fig s12h
BD Biosciences Cdc2 anticuerpos (BD Biosciences, 610038) was used in inmunoprecipitación on ratón samples at 1:1000 (fig s12h) and in western blot on ratón samples at 1:1000 (fig s12h). Science (2016) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • western blot; humanos; fig 2c
BD Biosciences Cdc2 anticuerpos (BD Pharmingen, 610037) was used in western blot on humanos samples (fig 2c). Onco Targets Ther (2015) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • inmunoprecipitación; humanos; fig 4
  • western blot; humanos; 1:500; fig 4
BD Biosciences Cdc2 anticuerpos (BD, 610037) was used in inmunoprecipitación on humanos samples (fig 4) and in western blot on humanos samples at 1:500 (fig 4). Cell Rep (2015) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • western blot; humanos; fig s2
BD Biosciences Cdc2 anticuerpos (BD Transduction, 610038) was used in western blot on humanos samples (fig s2). Sci Rep (2015) ncbi
ratón monoclonal (44/Cdk1/Cdc2)
  • western blot; humanos; 1:250; fig 5
BD Biosciences Cdc2 anticuerpos (BD Biosciences, 612306) was used in western blot on humanos samples at 1:250 (fig 5). Front Microbiol (2015) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • western blot; humanos
BD Biosciences Cdc2 anticuerpos (BD Transduction, 610038) was used in western blot on humanos samples . Biol Open (2015) ncbi
ratón monoclonal (1/Cdk1/Cdc2)
  • inmunocitoquímica; humanos
BD Biosciences Cdc2 anticuerpos (BD, 610037) was used in inmunocitoquímica on humanos samples . Cancer Res (2014) ncbi
EMD Millipore
conejo policlonal
  • western blot; humanos; fig 2b
EMD Millipore Cdc2 anticuerpos (Millipore, 0923) was used in western blot on humanos samples (fig 2b). Nucleic Acids Res (2016) ncbi
conejo policlonal
  • western blot; ratón; 1:1000
EMD Millipore Cdc2 anticuerpos (Upstate, 06-923) was used in western blot on ratón samples at 1:1000. Development (2015) ncbi
artículos revisados
  1. Frottin F, Schueder F, Tiwary S, Gupta R, Korner R, Schlichthaerle T, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342-347 pubmed publisher
  2. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed publisher
  3. Qi D, Hu L, Jiao T, Zhang T, Tong X, Ye X. Phosphatase Cdc25A Negatively Regulates the Antiviral Immune Response by Inhibiting TBK1 Activity. J Virol. 2018;92: pubmed publisher
  4. Rai A, Chen J, Selbach M, Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211-216 pubmed publisher
  5. Lee C, Hsieh T. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal. 2018;47:16-26 pubmed publisher
  6. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed publisher
  7. Huang T, Fowler F, Chen C, Shen Z, SLECKMAN B, Tyler J. The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell. 2018;69:879-892.e5 pubmed publisher
  8. Geng Y, Michowski W, Chick J, Wang Y, Jecrois M, Sweeney K, et al. Kinase-independent function of E-type cyclins in liver cancer. Proc Natl Acad Sci U S A. 2018;115:1015-1020 pubmed publisher
  9. Wang Y, Liu X, Zhou L, Duong D, Bhuripanyo K, Zhao B, et al. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nat Commun. 2017;8:2232 pubmed publisher
  10. Liao P, Zeng S, Zhou X, Chen T, Zhou F, Cao B, et al. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell. 2017;68:1134-1146.e6 pubmed publisher
  11. Hu J, Sun F, Handel M. Nuclear localization of EIF4G3 suggests a role for the XY body in translational regulation during spermatogenesis in mice. Biol Reprod. 2018;98:102-114 pubmed publisher
  12. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed publisher
  13. Otto T, Candido S, Pilarz M, Sicinska E, Bronson R, Bowden M, et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci U S A. 2017;114:10660-10665 pubmed publisher
  14. Zhu Z, Lou C, Zheng Z, Zhu R, Tian S, Xie C, et al. ZFP403, a novel tumor suppressor, inhibits the proliferation and metastasis in ovarian cancer. Gynecol Oncol. 2017;147:418-425 pubmed publisher
  15. Giono L, Resnick Silverman L, Carvajal L, St Clair S, Manfredi J. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene. 2017;36:6762-6773 pubmed publisher
  16. Zhang T, Du W, Wilson A, Namekawa S, Andreassen P, Meetei A, et al. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep. 2017;7:45626 pubmed publisher
  17. Xu P, Zhou Z, Xiong M, Zou W, Deng X, Ganaie S, et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017;13:e1006266 pubmed publisher
  18. Folco H, Chalamcharla V, Sugiyama T, Thillainadesan G, Zofall M, Balachandran V, et al. Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature. 2017;543:126-130 pubmed publisher
  19. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed publisher
  20. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed publisher
  21. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed publisher
  22. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed publisher
  23. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed publisher
  24. Jablonska B, Gierdalski M, Chew L, Hawley T, Catron M, Lichauco A, et al. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat Commun. 2016;7:13866 pubmed publisher
  25. Huang Z, Zhou X, He Y, Ke X, Wen Y, Zou F, et al. Hyperthermia enhances 17-DMAG efficacy in hepatocellular carcinoma cells with aggravated DNA damage and impaired G2/M transition. Sci Rep. 2016;6:38072 pubmed publisher
  26. Li H, Wang R, Jiang H, Zhang E, Tan J, Xu H, et al. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol. 2016;35:680-690 pubmed
  27. Kanakkanthara A, Jeganathan K, Limzerwala J, Baker D, Hamada M, Nam H, et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549-1552 pubmed
  28. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed publisher
  29. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed publisher
  30. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed publisher
  31. Schwermer M, Dreesmann S, Eggert A, Althoff K, Steenpass L, Schramm A, et al. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines. Clin Exp Ophthalmol. 2017;45:288-296 pubmed publisher
  32. Diril M, Bisteau X, Kitagawa M, Caldez M, Wee S, Gunaratne J, et al. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet. 2016;12:e1006310 pubmed publisher
  33. Song S, Kim K, Jo E, Kim Y, Kwon J, Bae S, et al. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928-36 pubmed publisher
  34. Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res. 2016;44:7755-65 pubmed publisher
  35. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed publisher
  36. Helland Ø, Popa M, Bischof K, Gjertsen B, McCormack E, Bjørge L. The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer. PLoS ONE. 2016;11:e0158208 pubmed publisher
  37. Brosh R, Hrynyk I, Shen J, Waghray A, Zheng N, Lemischka I. A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun. 2016;7:11742 pubmed publisher
  38. Chen X, Stauffer S, Chen Y, Dong J. Ajuba Phosphorylation by CDK1 Promotes Cell Proliferation and Tumorigenesis. J Biol Chem. 2016;291:14761-72 pubmed publisher
  39. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed publisher
  40. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed publisher
  41. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed publisher
  42. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed publisher
  43. Heilmann T, Dittmann L, van Mackelenbergh M, Mundhenke C, Weimer J, Arnold N, et al. Head-to-head comparison of the impact of Aurora A, Aurora B, Repp86, CDK1, CDK2 and Ki67 expression in two of the most relevant gynaecological tumor entities. Arch Gynecol Obstet. 2016;294:813-23 pubmed publisher
  44. Cheng C, Jiao J, Qian Y, Guo X, Huang J, Dai M, et al. Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep. 2016;13:3763-70 pubmed publisher
  45. Chang L, Huang J, Wang K, Li J, Yan R, Zhu L, et al. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy. BMC Cancer. 2016;16:190 pubmed publisher
  46. Zhang W, Liang Z, Li J. Inhibition of rhotekin exhibits antitumor effects in lung cancer cells. Oncol Rep. 2016;35:2529-34 pubmed publisher
  47. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed publisher
  48. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed publisher
  49. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed publisher
  50. Li R, Liao G, Nirujogi R, Pinto S, Shaw P, Huang T, et al. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog. 2015;11:e1005346 pubmed publisher
  51. Choe C, Shin Y, Kim C, Choi S, Lee J, Kim S, et al. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther. 2015;8:3665-78 pubmed publisher
  52. Toledo C, Ding Y, Hoellerbauer P, Davis R, Basom R, Girard E, et al. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells. Cell Rep. 2015;13:2425-2439 pubmed publisher
  53. Ortmann B, Bensaddek D, Carvalhal S, Moser S, Mudie S, Griffis E, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191-205 pubmed publisher
  54. Zhang Y, Yu J, Lee C, Xu B, Sartor M, Koenig R. Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein. Oncotarget. 2015;6:40418-32 pubmed publisher
  55. dos Santos N, Matias A, Higa G, Kihara A, Cerchiaro G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev. 2015;2015:162876 pubmed publisher
  56. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed publisher
  57. Seidel C, Schnekenburger M, Mazumder A, Teiten M, Kirsch G, Dicato M, et al. 4-Hydroxybenzoic acid derivatives as HDAC6-specific inhibitors modulating microtubular structure and HSP90α chaperone activity against prostate cancer. Biochem Pharmacol. 2016;99:31-52 pubmed publisher
  58. Voets E, Marsman J, Demmers J, Beijersbergen R, Wolthuis R. The lethal response to Cdk1 inhibition depends on sister chromatid alignment errors generated by KIF4 and isoform 1 of PRC1. Sci Rep. 2015;5:14798 pubmed publisher
  59. Yu C, Ji S, Sha Q, Sun Q, Fan H. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun. 2015;6:8017 pubmed publisher
  60. Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, et al. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene. 2016;35:2453-64 pubmed publisher
  61. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed publisher
  62. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed publisher
  63. Caspari T, Hilditch V. Two Distinct Cdc2 Pools Regulate Cell Cycle Progression and the DNA Damage Response in the Fission Yeast S.pombe. PLoS ONE. 2015;10:e0130748 pubmed publisher
  64. McCloy R, Parker B, Rogers S, Chaudhuri R, Gayevskiy V, Hoffman N, et al. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs. Mol Cell Proteomics. 2015;14:2194-212 pubmed publisher
  65. Arana M, Tocchetti G, Domizi P, Arias A, Rigalli J, Ruiz M, et al. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol. 2015;287:178-90 pubmed publisher
  66. Saini P, Li Y, Dobbelstein M. Wee1 is required to sustain ATR/Chk1 signaling upon replicative stress. Oncotarget. 2015;6:13072-87 pubmed
  67. Li C, Wu W, Wu W, Liao Y, Chen L, Huang C, et al. The cAMP responsive element binding protein 1 transactivates epithelial membrane protein 2, a potential tumor suppressor in the urinary bladder urothelial carcinoma. Oncotarget. 2015;6:9220-39 pubmed
  68. Guha G, Lu W, Li S, Liang X, Kulesz Martin M, Mahmud T, et al. Novel Pactamycin Analogs Induce p53 Dependent Cell-Cycle Arrest at S-Phase in Human Head and Neck Squamous Cell Carcinoma (HNSCC) Cells. PLoS ONE. 2015;10:e0125322 pubmed publisher
  69. Suzuki M, Takeda T, Nakagawa H, Iwata S, Watanabe T, Siddiquey M, et al. The heat shock protein 90 inhibitor BIIB021 suppresses the growth of T and natural killer cell lymphomas. Front Microbiol. 2015;6:280 pubmed publisher
  70. Garg A, Futcher B, Leatherwood J. A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res. 2015;43:6874-88 pubmed publisher
  71. Voets E, Wolthuis R. MASTL promotes cyclin B1 destruction by enforcing Cdc20-independent binding of cyclin B1 to the APC/C. Biol Open. 2015;4:484-95 pubmed publisher
  72. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed publisher
  73. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed publisher
  74. Yuan S, Vilimas P, Zagorodnyuk V, Gibbins I. Novel spinal pathways identified by neuronal c-Fos expression after urethrogenital reflex activation in female guinea pigs. Neuroscience. 2015;288:37-50 pubmed publisher
  75. Hasegawa H, Ishibashi K, Kubota S, Yamaguchi C, Yuki R, Nakajo H, et al. Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS ONE. 2014;9:e116048 pubmed publisher
  76. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed publisher
  77. Sung W, Lin Y, Wu P, Yen H, Lai H, Su T, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients. BMC Cancer. 2014;14:951 pubmed publisher
  78. Xue L, Furusawa Y, Okayasu R, Miura M, Cui X, Liu C, et al. The complexity of DNA double strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function. DNA Repair (Amst). 2015;25:72-83 pubmed publisher
  79. Jirawatnotai S, Sharma S, Michowski W, Suktitipat B, Geng Y, Quackenbush J, et al. The cyclin D1-CDK4 oncogenic interactome enables identification of potential novel oncogenes and clinical prognosis. Cell Cycle. 2014;13:2889-900 pubmed publisher
  80. Chipumuro E, Marco E, Christensen C, Kwiatkowski N, Zhang T, Hatheway C, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014;159:1126-1139 pubmed publisher
  81. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed publisher
  82. Greve K, Lindgreen J, Terp M, Pedersen C, Schmidt S, Mollenhauer J, et al. Ectopic expression of cancer/testis antigen SSX2 induces DNA damage and promotes genomic instability. Mol Oncol. 2015;9:437-49 pubmed publisher
  83. Munday D, Wu W, Smith N, Fix J, Noton S, Galloux M, et al. Interactome analysis of the human respiratory syncytial virus RNA polymerase complex identifies protein chaperones as important cofactors that promote L-protein stability and RNA synthesis. J Virol. 2015;89:917-30 pubmed publisher
  84. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour M, et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol. 2014;16:1080-91 pubmed publisher
  85. Xu H, Zhou Y, Coughlan K, Ding Y, Wang S, Wu Y, et al. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta. 2015;1853:65-73 pubmed publisher
  86. Pattabiraman C, Hong S, Gunasekharan V, Pranatharthi A, Bajaj J, Srivastava S, et al. CD66+ cells in cervical precancers are partially differentiated progenitors with neoplastic traits. Cancer Res. 2014;74:6682-92 pubmed publisher
  87. Yanagi T, Krajewska M, Matsuzawa S, Reed J. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells. Cancer Res. 2014;74:5795-807 pubmed publisher
  88. Vassilopoulos A, Tominaga Y, Kim H, Lahusen T, Li B, Yu H, et al. WEE1 murine deficiency induces hyper-activation of APC/C and results in genomic instability and carcinogenesis. Oncogene. 2015;34:3023-35 pubmed publisher
  89. Ji X, Lu H, Zhou Q, Luo K. LARP7 suppresses P-TEFb activity to inhibit breast cancer progression and metastasis. elife. 2014;3:e02907 pubmed publisher
  90. de Graaf E, Kaplon J, Zhou H, Heck A, Peeper D, Altelaar A. Phosphoproteome dynamics in onset and maintenance of oncogene-induced senescence. Mol Cell Proteomics. 2014;13:2089-100 pubmed publisher
  91. Silva A, Santos A, Farfel J, Grinberg L, Ferretti R, Campos A, et al. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS ONE. 2014;9:e99897 pubmed publisher
  92. Hou Z, Zhao W, Zhou J, Shen L, Zhan P, Xu C, et al. A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int J Biochem Cell Biol. 2014;53:380-8 pubmed publisher
  93. Rodríguez Gabriel M. Analyzing Cdc2/Cdk1 activation during stress response in Schizosaccharomyces pombe. Methods Mol Biol. 2014;1170:383-92 pubmed publisher
  94. Kobayashi H, Saito T, Sato K, Furusawa K, Hosokawa T, Tsutsumi K, et al. Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. J Biol Chem. 2014;289:19627-36 pubmed publisher
  95. Kang Q, Srividhya J, Ipe J, Pomerening J. Evidence toward a dual phosphatase mechanism that restricts Aurora A (Thr-295) phosphorylation during the early embryonic cell cycle. J Biol Chem. 2014;289:17480-96 pubmed publisher
  96. Brown D, LASSEGUE B, Lee M, Zafari R, Long J, Saavedra H, et al. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS ONE. 2014;9:e96657 pubmed publisher
  97. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed publisher
  98. Fukumoto Y, Morii M, Miura T, Kubota S, Ishibashi K, Honda T, et al. Src family kinases promote silencing of ATR-Chk1 signaling in termination of DNA damage checkpoint. J Biol Chem. 2014;289:12313-29 pubmed publisher
  99. Sun S, Han Y, Liu J, Fang Y, Tian Y, Zhou J, et al. Trichostatin A targets the mitochondrial respiratory chain, increasing mitochondrial reactive oxygen species production to trigger apoptosis in human breast cancer cells. PLoS ONE. 2014;9:e91610 pubmed publisher
  100. Kaur S, Fielding A, Gassner G, Carter N, Royle S. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. elife. 2014;3:e00829 pubmed publisher
  101. Matthess Y, Raab M, Knecht R, Becker S, Strebhardt K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol Oncol. 2014;8:596-608 pubmed publisher
  102. Chung Y, Pan C, Liou W, Sheu M, Lin W, Chen T, et al. NSC746364, a G-quadruplex-stabilizing agent, suppresses cell growth of A549 human lung cancer cells through activation of the ATR/Chk1-dependent pathway. J Pharmacol Sci. 2014;124:7-17 pubmed
  103. Adeyemi R, Pintel D. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells. PLoS Pathog. 2014;10:e1003891 pubmed publisher
  104. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed publisher
  105. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed publisher
  106. Bana E, Sibille E, Valente S, Cerella C, Chaimbault P, Kirsch G, et al. A novel coumarin-quinone derivative SV37 inhibits CDC25 phosphatases, impairs proliferation, and induces cell death. Mol Carcinog. 2015;54:229-41 pubmed publisher
  107. Tan E, Caro S, Potnis A, Lanza C, Slawson C. O-linked N-acetylglucosamine cycling regulates mitotic spindle organization. J Biol Chem. 2013;288:27085-99 pubmed publisher
  108. Miyake M, Goodison S, Urquidi V, Gomes Giacoia E, Rosser C. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest. 2013;93:768-78 pubmed publisher
  109. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed publisher
  110. Trakala M, Fernández Miranda G, Perez de Castro I, Heeschen C, Malumbres M. Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21(Cip1). Cell Cycle. 2013;12:1030-41 pubmed publisher
  111. Zhang J, Espinoza L, Kinders R, Lawrence S, Pfister T, Zhou M, et al. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32:4397-405 pubmed publisher
  112. Diril M, Ratnacaram C, Padmakumar V, Du T, Wasser M, Coppola V, et al. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc Natl Acad Sci U S A. 2012;109:3826-31 pubmed publisher
  113. Garimella S, Rocca A, Lipkowitz S. WEE1 inhibition sensitizes basal breast cancer cells to TRAIL-induced apoptosis. Mol Cancer Res. 2012;10:75-85 pubmed publisher
  114. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed publisher
  115. Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells. 2011;16:166-78 pubmed publisher
  116. Kim A, Joseph S, Khan A, Epstein C, Sobel R, Huang T. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic Biol Med. 2010;48:1501-12 pubmed publisher
  117. Paronetto M, Bianchi E, Geremia R, Sette C. Dynamic expression of the RNA-binding protein Sam68 during mouse pre-implantation development. Gene Expr Patterns. 2008;8:311-22 pubmed publisher