Este es un revisión de humanos RAB7A usando RAB7A anticuerpos en todos los métodos . Con esto se pretende ayudar a los visitantes de labome a encontrar los RAB7A anticuerpos más adecuados.
RAB7A sinónimo: PRO2706; RAB7; ras-related protein Rab-7a; RAB7, member RAS oncogene family; Ras-associated protein RAB7

Knockout validation
Abcam
conejo monoclonal (EPR7589)
  • immunocytochemistry knockout validation; humanos; 1:100; fig 1b
  • inmunocitoquímica; humanos; 1:100; fig 1a
  • western blot; humanos; 1:1000; fig s4d
Abcam RAB7A anticuerpos (Abcam, EPR7589) was used in immunocytochemistry knockout validation on humanos samples at 1:100 (fig 1b), in inmunocitoquímica on humanos samples at 1:100 (fig 1a) and in western blot on humanos samples at 1:1000 (fig s4d). EMBO J (2018) ncbi
Abcam
conejo monoclonal (EPR7589)
  • immunocytochemistry knockout validation; ratón; fig 2D
  • western blot knockout validation; ratón; fig 2C
Abcam RAB7A anticuerpos (Abcam, ab137029) was used in immunocytochemistry knockout validation on ratón samples (fig 2D) and in western blot knockout validation on ratón samples (fig 2C). J Immunol (2015) ncbi
Cell Signaling Technology
conejo monoclonal (D95F2)
  • immunocytochemistry knockout validation; ratón; fig 1
  • western blot knockout validation; ratón; fig 1
  • citometría de flujo; ratón; fig 1
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in immunocytochemistry knockout validation on ratón samples (fig 1), in western blot knockout validation on ratón samples (fig 1) and in citometría de flujo on ratón samples (fig 1). Autophagy (2013) ncbi
Abcam
ratón monoclonal (Rab7-117)
  • western blot; humanos; 1:1000; fig 1d
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in western blot on humanos samples at 1:1000 (fig 1d). elife (2019) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; humanos; fig 4m
Abcam RAB7A anticuerpos (Abcam, Rab7-117) was used in inmunocitoquímica on humanos samples (fig 4m). Front Immunol (2018) ncbi
conejo monoclonal (EPR7589)
  • ELISA; ratón; 1:1000; fig 3c
Abcam RAB7A anticuerpos (Abcam, ab137029) was used in ELISA on ratón samples at 1:1000 (fig 3c). Nat Cell Biol (2019) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; ratón; fig s10e
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on ratón samples (fig s10e). Science (2018) ncbi
ratón monoclonal (Rab7-117)
  • inmunohistoquímica; ratón; 1:2000; fig s5
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunohistoquímica on ratón samples at 1:2000 (fig s5). J Clin Invest (2018) ncbi
conejo monoclonal (EPR7589)
  • immunocytochemistry knockout validation; humanos; 1:100; fig 1b
  • inmunocitoquímica; humanos; 1:100; fig 1a
  • western blot; humanos; 1:1000; fig s4d
Abcam RAB7A anticuerpos (Abcam, EPR7589) was used in immunocytochemistry knockout validation on humanos samples at 1:100 (fig 1b), in inmunocitoquímica on humanos samples at 1:100 (fig 1a) and in western blot on humanos samples at 1:1000 (fig s4d). EMBO J (2018) ncbi
ratón monoclonal (Rab7-117)
  • western blot; rata; 1:500; fig 5e
Abcam RAB7A anticuerpos (Abcam, 50533) was used in western blot on rata samples at 1:500 (fig 5e). J Cell Biol (2017) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; Sus; fig 3d
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on Sus samples (fig 3d). Biochim Biophys Acta Mol Cell Biol Lipids (2017) ncbi
ratón monoclonal (Rab7-117)
  • western blot; ratón; fig 8
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in western blot on ratón samples (fig 8). Cell Res (2017) ncbi
conejo monoclonal (EPR7588(B))
  • immunohistochemistry - frozen section; rata; fig 5
Abcam RAB7A anticuerpos (Abcam, ab126712) was used in immunohistochemistry - frozen section on rata samples (fig 5). PLoS ONE (2016) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; ratón; fig 3g
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on ratón samples (fig 3g). Oncotarget (2016) ncbi
ratón monoclonal (Rab7-117)
  • inmunohistoquímica; humanos; 1:100; fig 4e
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunohistoquímica on humanos samples at 1:100 (fig 4e). J Immunol (2016) ncbi
conejo monoclonal (EPR7589)
  • western blot; ratón; fig 1
Abcam RAB7A anticuerpos (Abcam, Ab137029) was used in western blot on ratón samples (fig 1). EMBO J (2016) ncbi
ratón monoclonal (Rab7-117)
  • western blot; ratón; fig 1
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in western blot on ratón samples (fig 1). Autophagy (2016) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; humanos; 1:1000; fig 4
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on humanos samples at 1:1000 (fig 4). J Cell Sci (2016) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; humanos; fig 4
Abcam RAB7A anticuerpos (Abcam, 50533) was used in inmunocitoquímica on humanos samples (fig 4). Arterioscler Thromb Vasc Biol (2016) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; ratón; 1:200-1:500; fig 7
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on ratón samples at 1:200-1:500 (fig 7). PLoS Genet (2015) ncbi
ratón monoclonal (Rab7-117)
  • western blot; ratón
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in western blot on ratón samples . Autophagy (2015) ncbi
conejo monoclonal (EPR7589)
  • inmunocitoquímica; humanos; 1:300; fig 2
  • western blot; humanos; 1:1000; fig 4
Abcam RAB7A anticuerpos (Abcam, ab137029) was used in inmunocitoquímica on humanos samples at 1:300 (fig 2) and in western blot on humanos samples at 1:1000 (fig 4). Nat Commun (2015) ncbi
ratón monoclonal (Rab7-117)
  • immunohistochemistry - paraffin section; ratón
Abcam RAB7A anticuerpos (Abcam, Rab7-117) was used in immunohistochemistry - paraffin section on ratón samples . Front Cell Neurosci (2015) ncbi
conejo monoclonal (EPR7589)
  • immunocytochemistry knockout validation; ratón; fig 2D
  • western blot knockout validation; ratón; fig 2C
Abcam RAB7A anticuerpos (Abcam, ab137029) was used in immunocytochemistry knockout validation on ratón samples (fig 2D) and in western blot knockout validation on ratón samples (fig 2C). J Immunol (2015) ncbi
ratón monoclonal (Rab7-117)
  • inmunoprecipitación; rata
  • western blot; rata
  • inmunoprecipitación; ratón
  • western blot; ratón
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunoprecipitación on rata samples , in western blot on rata samples , in inmunoprecipitación on ratón samples and in western blot on ratón samples . J Neurosci (2015) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; ratón; 1:50; fig 2a
  • western blot; ratón; 1:500; fig 2b
  • immunohistochemistry - paraffin section; humanos; 1:50; fig 4a
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on ratón samples at 1:50 (fig 2a), in western blot on ratón samples at 1:500 (fig 2b) and in immunohistochemistry - paraffin section on humanos samples at 1:50 (fig 4a). Hum Mol Genet (2014) ncbi
ratón monoclonal (Rab7-117)
  • western blot; humanos; fig 3
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in western blot on humanos samples (fig 3). PLoS Pathog (2013) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; humanos
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on humanos samples . FASEB J (2013) ncbi
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; perro
  • western blot; perro
Abcam RAB7A anticuerpos (Abcam, ab50533) was used in inmunocitoquímica on perro samples and in western blot on perro samples . J Biol Chem (2012) ncbi
Enzo Life Sciences
ratón monoclonal (7F10)
  • western blot; humanos; fig 7a
Enzo Life Sciences RAB7A anticuerpos (Enzo Life Sciences, ALX-804-961-0100) was used in western blot on humanos samples (fig 7a). Cell Death Differ (2017) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 3a
Enzo Life Sciences RAB7A anticuerpos (ALEXIS Corporation, ALX-804-961-0100) was used in western blot on humanos samples (fig 3a). Antioxid Redox Signal (2017) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 4.d,e,f
Enzo Life Sciences RAB7A anticuerpos (Enzo Life Sciences, 7F10) was used in western blot on humanos samples (fig 4.d,e,f). Cell Death Dis (2016) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 2
Enzo Life Sciences RAB7A anticuerpos (Enzo, ALX-804-961-0100) was used in western blot on humanos samples (fig 2). Int J Oncol (2016) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 5
Enzo Life Sciences RAB7A anticuerpos (Enzo, ALX-804-961-01100) was used in western blot on humanos samples (fig 5). Cell Microbiol (2016) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 5
Enzo Life Sciences RAB7A anticuerpos (Enzo, 7F10) was used in western blot on humanos samples (fig 5). Sci Rep (2016) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 3
Enzo Life Sciences RAB7A anticuerpos (Enzo life science, ALX-804-961-0100) was used in western blot on humanos samples (fig 3). Sci Rep (2016) ncbi
ratón monoclonal (7F10)
  • western blot; humanos
Enzo Life Sciences RAB7A anticuerpos (Enzo Life Sciences, ALX-804-961-0100) was used in western blot on humanos samples . Oncotarget (2015) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; fig 2
Enzo Life Sciences RAB7A anticuerpos (Enzo, 7F10) was used in western blot on humanos samples (fig 2). Cell Death Dis (2015) ncbi
ratón monoclonal (7F10)
  • western blot; humanos; 1:1000
Enzo Life Sciences RAB7A anticuerpos (Enzo life science, ALX-804-961-0100) was used in western blot on humanos samples at 1:1000. Chem Biol Interact (2015) ncbi
Santa Cruz Biotechnology
ratón monoclonal (B-3)
  • inmunocitoquímica; humanos; fig 4f
  • western blot; humanos; fig 5f
Santa Cruz Biotechnology RAB7A anticuerpos (Santa Cruz, sc-376362) was used in inmunocitoquímica on humanos samples (fig 4f) and in western blot on humanos samples (fig 5f). J Cell Biol (2017) ncbi
ratón monoclonal (B-3)
  • western blot; humanos; 1:800; fig 7f
Santa Cruz Biotechnology RAB7A anticuerpos (SantaCruz, sc-376362) was used in western blot on humanos samples at 1:800 (fig 7f). EMBO Mol Med (2017) ncbi
ratón monoclonal (B-3)
  • bloquear o activar experimentos; ratón; fig 3
  • inmunocitoquímica; ratón; fig 2
Santa Cruz Biotechnology RAB7A anticuerpos (Santa Cruz Biotechnology, sc-376362) was used in bloquear o activar experimentos on ratón samples (fig 3) and in inmunocitoquímica on ratón samples (fig 2). Sci Rep (2016) ncbi
ratón monoclonal (B-3)
  • inmunocitoquímica; humanos; 1:50; fig 6
Santa Cruz Biotechnology RAB7A anticuerpos (Santa Cruz, sc-376362) was used in inmunocitoquímica on humanos samples at 1:50 (fig 6). J Cell Sci (2016) ncbi
ratón monoclonal (D-4)
  • western blot; humanos; 1:1000; fig 6
Santa Cruz Biotechnology RAB7A anticuerpos (Santa Cruz, sc-271608) was used in western blot on humanos samples at 1:1000 (fig 6). Cell Death Dis (2014) ncbi
GeneTex
ratón monoclonal (Rab7-117)
  • inmunocitoquímica; ratón; fig s7a
GeneTex RAB7A anticuerpos (GeneTex, GTX 16196) was used in inmunocitoquímica on ratón samples (fig s7a). Science (2016) ncbi
Proteintech Group
conejo policlonal
  • western blot; humanos; fig 5a
Proteintech Group RAB7A anticuerpos (Proteintech, 55469-1-AP) was used in western blot on humanos samples (fig 5a). Sci Rep (2017) ncbi
Cell Signaling Technology
conejo monoclonal (D95F2)
  • western blot; humanos; fig 2d
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on humanos samples (fig 2d). Biol Open (2019) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; 1:250; fig s2
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367S) was used in inmunocitoquímica on humanos samples at 1:250 (fig s2). J Cell Sci (2019) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 3a
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples (fig 3a). EMBO J (2019) ncbi
conejo monoclonal (D95F2)
  • western blot; humanos; fig 2e
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367S) was used in western blot on humanos samples (fig 2e). Cell (2019) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; 1:200; fig 6c
  • inmunocitoquímica; mosca de la fruta ; 1:5; fig 2h
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on ratón samples at 1:200 (fig 6c) and in inmunocitoquímica on mosca de la fruta samples at 1:5 (fig 2h). elife (2019) ncbi
conejo monoclonal (D95F2)
  • proximity ligation assay; humanos; 1:100; fig 5b, 5f
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in proximity ligation assay on humanos samples at 1:100 (fig 5b, 5f). Cell Rep (2018) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig s3g
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367S) was used in inmunocitoquímica on ratón samples (fig s3g). Cell (2018) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 5a
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, 9367) was used in western blot on ratón samples (fig 5a). EMBO J (2018) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 7a
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples (fig 7a). J Biol Chem (2018) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 6b
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples (fig 6b). Proc Natl Acad Sci U S A (2017) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig s5b
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on ratón samples (fig s5b). PLoS Genet (2017) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig s5
Cell Signaling Technology RAB7A anticuerpos (cell signalling, D95F2) was used in inmunocitoquímica on humanos samples (fig s5). PLoS Pathog (2017) ncbi
conejo monoclonal (D95F2)
  • inmunoprecipitación; humanos; fig 5g
  • inmunocitoquímica; humanos; fig 5k
  • western blot; humanos; fig 5g
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunoprecipitación on humanos samples (fig 5g), in inmunocitoquímica on humanos samples (fig 5k) and in western blot on humanos samples (fig 5g). J Cell Biol (2017) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig s5e
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on humanos samples (fig s5e). Nature (2017) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; 1:1000; fig 7c
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples at 1:1000 (fig 7c). Nat Commun (2017) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig 4a
  • western blot; humanos; fig 1c
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on humanos samples (fig 4a) and in western blot on humanos samples (fig 1c). Autophagy (2017) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; 1:1000; fig 6a
Cell Signaling Technology RAB7A anticuerpos (cell signalling, 9367S) was used in western blot on ratón samples at 1:1000 (fig 6a). Stroke (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; 1:300; fig 3
  • western blot; ratón; 1:5000; fig 3
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on ratón samples at 1:300 (fig 3) and in western blot on ratón samples at 1:5000 (fig 3). J Cell Sci (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig 7a
  • western blot; humanos; fig 7e
Cell Signaling Technology RAB7A anticuerpos (cell signalling, 9367) was used in inmunocitoquímica on humanos samples (fig 7a) and in western blot on humanos samples (fig 7e). PLoS Pathog (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; rata; fig 5f
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, D95F2) was used in inmunocitoquímica on rata samples (fig 5f). Microbiologyopen (2017) ncbi
conejo monoclonal (D95F2)
  • western blot; perro; fig 11a
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in western blot on perro samples (fig 11a). J Biol Chem (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; 1:100; fig 1s3
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on ratón samples at 1:100 (fig 1s3). elife (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig s8e
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on ratón samples (fig s8e). Biol Open (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; 1:100; fig 1
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in inmunocitoquímica on ratón samples at 1:100 (fig 1). Nat Commun (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; 1:100; fig s1c
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, D95F2) was used in inmunocitoquímica on humanos samples at 1:100 (fig s1c). Nat Commun (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig 4
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in inmunocitoquímica on humanos samples (fig 4). EMBO Rep (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig 2c
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, D95F2) was used in inmunocitoquímica on humanos samples (fig 2c). EMBO Rep (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig 2
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, 9367) was used in inmunocitoquímica on ratón samples (fig 2). Mol Metab (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig 2
  • inmunocitoquímica; humanos; fig 8a
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, D95F2) was used in inmunocitoquímica on ratón samples (fig 2) and in inmunocitoquímica on humanos samples (fig 8a). Sci Rep (2016) ncbi
conejo monoclonal (D95F2)
  • western blot; humanos; 1:1000; fig 2
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in western blot on humanos samples at 1:1000 (fig 2). elife (2016) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; 1:500; fig 5a
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples at 1:500 (fig 5a). FASEB J (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig s5
Cell Signaling Technology RAB7A anticuerpos (CST, 9367) was used in inmunocitoquímica on ratón samples (fig s5). Acta Neuropathol (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; 1:50
Cell Signaling Technology RAB7A anticuerpos (Cell Signalling, D95F2) was used in inmunocitoquímica on humanos samples at 1:50. Nature (2016) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; 1:1000; fig 6d
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in western blot on ratón samples at 1:1000 (fig 6d). Oncotarget (2016) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 2
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, D95F2) was used in western blot on ratón samples (fig 2). Mol Biol Cell (2016) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; fig 2
Cell Signaling Technology RAB7A anticuerpos (BD, 9367) was used in inmunocitoquímica on humanos samples (fig 2). J Cell Biol (2015) ncbi
conejo monoclonal (D95F2)
  • western blot; rata; 1:1000
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367S) was used in western blot on rata samples at 1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; 1:100; fig 7
  • western blot; humanos; 1:2000; fig 7
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in inmunocitoquímica on humanos samples at 1:100 (fig 7) and in western blot on humanos samples at 1:2000 (fig 7). Nat Neurosci (2015) ncbi
conejo policlonal
  • western blot; ratón; 1:1000
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, 2094) was used in western blot on ratón samples at 1:1000. PLoS ONE (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 2094) was used in western blot on humanos samples (fig 3). Oncogene (2015) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; fig 7
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in inmunocitoquímica on ratón samples (fig 7). PLoS Genet (2015) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón; 1:50; fig s7a
Cell Signaling Technology RAB7A anticuerpos (Cell signaling, 9367) was used in inmunocitoquímica on ratón samples at 1:50 (fig s7a). EMBO Mol Med (2015) ncbi
conejo monoclonal (D95F2)
  • western blot; ratón; fig 5b
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, 9367) was used in western blot on ratón samples (fig 5b). EMBO Mol Med (2015) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos; 1:100
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, D95F2) was used in inmunocitoquímica on humanos samples at 1:100. J Clin Invest (2015) ncbi
conejo monoclonal (D95F2)
  • western blot; humanos; fig 4
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technologies, D95F2) was used in western blot on humanos samples (fig 4). J Virol (2015) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; humanos
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, D95F2) was used in inmunocitoquímica on humanos samples . J Cell Sci (2014) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling Technology, D95F2) was used in inmunocitoquímica on ratón samples . PLoS ONE (2014) ncbi
conejo monoclonal (D95F2)
  • inmunocitoquímica; ratón
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, D95F2) was used in inmunocitoquímica on ratón samples . PLoS ONE (2014) ncbi
conejo monoclonal (D95F2)
  • immunocytochemistry knockout validation; ratón; fig 1
  • western blot knockout validation; ratón; fig 1
  • citometría de flujo; ratón; fig 1
Cell Signaling Technology RAB7A anticuerpos (Cell Signaling, 9367) was used in immunocytochemistry knockout validation on ratón samples (fig 1), in western blot knockout validation on ratón samples (fig 1) and in citometría de flujo on ratón samples (fig 1). Autophagy (2013) ncbi
Addgene
Addgene RAB7A anticuerpos (Addgene, 12660) was used . Nat Neurosci (2015) ncbi
artículos revisados
  1. Xiong X, Lee C, Li W, Yu J, Zhu L, Kim Y, et al. Acid Sphingomyelinase regulates the localization and trafficking of palmitoylated proteins. Biol Open. 2019;: pubmed publisher
  2. Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, et al. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci. 2019;132: pubmed publisher
  3. Guo M, Hartlova A, Gierlinski M, Prescott A, Castellvi J, Losa J, et al. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38: pubmed publisher
  4. Jeppesen D, Fenix A, Franklin J, Higginbotham J, Zhang Q, Zimmerman L, et al. Reassessment of Exosome Composition. Cell. 2019;177:428-445.e18 pubmed publisher
  5. Valoskova K, Biebl J, Roblek M, Emtenani S, Gyoergy A, Misova M, et al. A conserved major facilitator superfamily member orchestrates a subset of O-glycosylation to aid macrophage tissue invasion. elife. 2019;8: pubmed publisher
  6. Yeshaw W, van der Zwaag M, Pinto F, Lahaye L, Faber A, Gómez Sánchez R, et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. elife. 2019;8: pubmed publisher
  7. Swain S, Roe M, Sebrell T, Sidar B, Dankoff J, VanAusdol R, et al. CD103 (αE Integrin) Undergoes Endosomal Trafficking in Human Dendritic Cells, but Does Not Mediate Epithelial Adhesion. Front Immunol. 2018;9:2989 pubmed publisher
  8. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed publisher
  9. Atakpa P, Thillaiappan N, Mataragka S, Prole D, Taylor C. IP3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca2+ to Lysosomes. Cell Rep. 2018;25:3180-3193.e7 pubmed publisher
  10. Theisen D, Davidson J, Briseño C, Gargaro M, Lauron E, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018;362:694-699 pubmed publisher
  11. Xu X, Xu J, Wu J, Hu Y, Han Y, Gu Y, et al. Phosphorylation-Mediated IFN-γR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell. 2018;175:1336-1351.e17 pubmed publisher
  12. Alissafi T, Hatzioannou A, Mintzas K, Barouni R, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest. 2018;128:3840-3852 pubmed publisher
  13. Hartlova A, Herbst S, Peltier J, Rodgers A, Bilkei Gorzo O, Fearns A, et al. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J. 2018;37: pubmed publisher
  14. Lim J, Lim J, Kim G, Levine R. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. J Biol Chem. 2018;293:7355-7366 pubmed publisher
  15. Jimenez Orgaz A, Kvainickas A, Nägele H, Denner J, Eimer S, Dengjel J, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37:235-254 pubmed publisher
  16. Gulbranson D, Davis E, Demmitt B, Ouyang Y, Ye Y, Yu H, et al. RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis. Proc Natl Acad Sci U S A. 2017;114:E8224-E8233 pubmed publisher
  17. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed publisher
  18. Zhang X, Jiang S, Mitok K, Li L, Attie A, Martin T. BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells. J Cell Biol. 2017;216:2151-2166 pubmed publisher
  19. Drake M, Brennan B, Briley K, Bart S, Sherman E, Szemiel A, et al. A role for glycolipid biosynthesis in severe fever with thrombocytopenia syndrome virus entry. PLoS Pathog. 2017;13:e1006316 pubmed publisher
  20. Marwaha R, Arya S, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216:1051-1070 pubmed publisher
  21. Kober A, Manavalan A, Tam Amersdorfer C, Holmér A, Saeed A, Fanaee Danesh E, et al. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:573-588 pubmed publisher
  22. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed publisher
  23. Hammerling B, Najor R, Cortez M, Shires S, Leon L, Gonzalez E, et al. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat Commun. 2017;8:14050 pubmed publisher
  24. Tanzer M, Khan N, Rickard J, Etemadi N, Lalaoui N, Spall S, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24:481-491 pubmed publisher
  25. Chen R, Zhao X, Wang Y, Xie Y, Liu J. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Sci Rep. 2017;7:40783 pubmed publisher
  26. Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017;27:352-372 pubmed publisher
  27. Shi B, Huang Q, Birkett R, Doyle R, Dorfleutner A, Stehlik C, et al. SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages. Autophagy. 2017;13:285-301 pubmed publisher
  28. Seo B, Min K, Woo S, Choe M, Choi K, Lee Y, et al. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP. Antioxid Redox Signal. 2017;27:215-233 pubmed publisher
  29. Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, et al. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke. 2016;47:3022-3031 pubmed
  30. Benkafadar N, Menardo J, Bourien J, Nouvian R, François F, Decaudin D, et al. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med. 2017;9:7-26 pubmed publisher
  31. Jaber N, Mohd Naim N, Wang Z, Deleon J, Kim S, Zhong H, et al. Vps34 regulates Rab7 and late endocytic trafficking through recruitment of the GTPase-activating protein Armus. J Cell Sci. 2016;129:4424-4435 pubmed
  32. Kumar B, Dutta D, Iqbal J, Ansari M, Roy A, Chikoti L, et al. ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. PLoS Pathog. 2016;12:e1005960 pubmed publisher
  33. Rofe A, Davis L, Whittingham J, Latimer Bowman E, Wilkinson A, Pryor P. The Rhodococcus equi virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. Microbiologyopen. 2017;6: pubmed publisher
  34. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  35. Vanhoutte D, Schips T, Kwong J, Davis J, Tjondrokoesoemo A, Brody M, et al. Thrombospondin expression in myofibers stabilizes muscle membranes. elife. 2016;5: pubmed publisher
  36. Hubert V, Peschel A, Langer B, Groger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open. 2016;5:1516-1529 pubmed publisher
  37. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed publisher
  38. Chaubey P, Hofstetter L, Roschitzki B, Stieger B. Proteomic Analysis of the Rat Canalicular Membrane Reveals Expression of a Complex System of P4-ATPases in Liver. PLoS ONE. 2016;11:e0158033 pubmed publisher
  39. Marquer C, Tian H, Yi J, Bastien J, Dall Armi C, Yang Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919 pubmed publisher
  40. Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, et al. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808 pubmed publisher
  41. Wu L, Sun Y, Ma L, Zhu J, Zhang B, Pan Q, et al. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum. Sci Rep. 2016;6:27332 pubmed publisher
  42. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed publisher
  43. Wang Y, Hu C, Li J, You X, Gao F. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget. 2016;7:38451-38466 pubmed publisher
  44. Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, et al. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 2016;49:153-63 pubmed publisher
  45. Scharn C, Collins A, Nair V, Stamm C, MARCIANO D, Graviss E, et al. Heme Oxygenase-1 Regulates Inflammation and Mycobacterial Survival in Human Macrophages during Mycobacterium tuberculosis Infection. J Immunol. 2016;196:4641-9 pubmed publisher
  46. Starling G, Yip Y, Sanger A, Morton P, Eden E, Dodding M. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep. 2016;17:823-41 pubmed publisher
  47. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed publisher
  48. Sellier C, Campanari M, Julie Corbier C, Gaucherot A, Kolb Cheynel I, Oulad Abdelghani M, et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 2016;35:1276-97 pubmed publisher
  49. Kurkinen K, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, et al. SEPT8 modulates ?-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci. 2016;129:2224-38 pubmed publisher
  50. Jiang H, Zhang X, Lin H. Lysine fatty acylation promotes lysosomal targeting of TNF-?. Sci Rep. 2016;6:24371 pubmed publisher
  51. Waguia Kontchou C, Tzivelekidis T, Gentle I, Hacker G. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact. Cell Microbiol. 2016;18:1583-1595 pubmed publisher
  52. Aizawa S, Fujiwara Y, Contu V, Hase K, Takahashi M, Kikuchi H, et al. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy. 2016;12:565-78 pubmed publisher
  53. Gschweitl M, Ulbricht A, Barnes C, Enchev R, Stoffel Studer I, Meyer Schaller N, et al. A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife. 2016;5:e13841 pubmed publisher
  54. O Rourke J, Bogdanik L, Yáñez A, Lall D, Wolf A, Muhammad A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351:1324-9 pubmed publisher
  55. Lisewski U, Koehncke C, Wilck N, Buschmeyer B, Pieske B, Roepke T. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3-/- mice. FASEB J. 2016;30:2476-89 pubmed publisher
  56. Gao X, Feng J, He Y, Xu F, Fan X, Huang W, et al. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep. 2016;6:22999 pubmed publisher
  57. Clifford R, Maryon E, Kaplan J. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci. 2016;129:1711-21 pubmed publisher
  58. Ouimet M, Hennessy E, van Solingen C, Koelwyn G, Hussein M, Ramkhelawon B, et al. miRNA Targeting of Oxysterol-Binding Protein-Like 6 Regulates Cholesterol Trafficking and Efflux. Arterioscler Thromb Vasc Biol. 2016;36:942-951 pubmed publisher
  59. Brahic M, Bousset L, Bieri G, Melki R, Gitler A. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 2016;131:539-48 pubmed publisher
  60. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed publisher
  61. Wu B, Yu L, Wang Y, Wang H, Li C, Yin Y, et al. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1. Oncotarget. 2016;7:2175-88 pubmed publisher
  62. Han M, Lee D, Woo S, Seo B, Min K, Kim S, et al. Galangin sensitizes TRAIL-induced apoptosis through down-regulation of anti-apoptotic proteins in renal carcinoma Caki cells. Sci Rep. 2016;6:18642 pubmed publisher
  63. Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, et al. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet. 2015;11:e1005749 pubmed publisher
  64. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed publisher
  65. Chrisam M, Pirozzi M, Castagnaro S, Blaauw B, Polishchuck R, Cecconi F, et al. Reactivation of autophagy by spermidine ameliorates the myopathic defects of collagen VI-null mice. Autophagy. 2015;11:2142-52 pubmed publisher
  66. Chaumet A, Wright G, Seet S, Tham K, Gounko N, Bard F. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus. Nat Commun. 2015;6:8218 pubmed publisher
  67. Hong N, Qi A, Weaver A. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions. J Cell Biol. 2015;210:753-69 pubmed publisher
  68. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed publisher
  69. Zhao Z, Sagare A, Ma Q, Halliday M, Kong P, Kisler K, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci. 2015;18:978-87 pubmed publisher
  70. Witwicka H, Jia H, Kutikov A, Reyes Gutiérrez P, Li X, Odgren P. TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption. PLoS ONE. 2015;10:e0127537 pubmed publisher
  71. La Rosa L, Perrone L, Nielsen M, Calissano P, Andersen O, Matrone C. Y682G Mutation of Amyloid Precursor Protein Promotes Endo-Lysosomal Dysfunction by Disrupting APP-SorLA Interaction. Front Cell Neurosci. 2015;9:109 pubmed publisher
  72. Strohecker A, Joshi S, Possemato R, Abraham R, Sabatini D, White E. Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene. 2015;34:5662-76 pubmed publisher
  73. Pone E, Lam T, Lou Z, Wang R, Chen Y, Liu D, et al. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. J Immunol. 2015;194:3065-78 pubmed publisher
  74. Lim J, Lachenmayer M, Wu S, Liu W, Kundu M, Wang R, et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015;11:e1004987 pubmed publisher
  75. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  76. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed publisher
  77. Fields J, Dumaop W, Eleuteri S, Elueteri S, Campos S, Serger E, et al. HIV-1 Tat alters neuronal autophagy by modulating autophagosome fusion to the lysosome: implications for HIV-associated neurocognitive disorders. J Neurosci. 2015;35:1921-38 pubmed publisher
  78. Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240-58 pubmed publisher
  79. Han M, Woo S, Min K, Kim S, Park J, Kim D, et al. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chem Biol Interact. 2015;228:69-78 pubmed publisher
  80. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed publisher
  81. Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest. 2015;125:593-606 pubmed publisher
  82. Nonnenmacher M, Cintrat J, Gillet D, Weber T. Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol. 2015;89:1673-87 pubmed publisher
  83. Lou J, Low Nam S, Kerkvliet J, Hoppe A. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages. J Cell Sci. 2014;127:5228-39 pubmed publisher
  84. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed publisher
  85. Chen K, Wang C, Tsai M, Wu C, Yang H, Chen L, et al. Interconnections between autophagy and the coagulation cascade in hepatocellular carcinoma. Cell Death Dis. 2014;5:e1244 pubmed publisher
  86. Farg M, Sundaramoorthy V, Sultana J, Yang S, Atkinson R, Levina V, et al. C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23:3579-95 pubmed publisher
  87. Lalioti V, Ilari A, O Connell D, Poser E, Sandoval I, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS ONE. 2014;9:e85438 pubmed publisher
  88. Roy S, Stevens M, So L, Edinger A. Reciprocal effects of rab7 deletion in activated and neglected T cells. Autophagy. 2013;9:1009-23 pubmed publisher
  89. Vogt D, Camus G, Herker E, Webster B, Tsou C, Greene W, et al. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9:e1003302 pubmed publisher
  90. Wu H, Downs D, Ghosh K, Ghosh A, Staib P, Monod M, et al. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J. 2013;27:2132-44 pubmed publisher
  91. Cho K, Park J, Piggott A, Salim A, Gorfe A, Parton R, et al. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins. J Biol Chem. 2012;287:43573-84 pubmed publisher