Este es un revisión de ratón Mapk1 usando Mapk1 anticuerpos en todos los métodos . Con esto se pretende ayudar a los visitantes de labome a encontrar los Mapk1 anticuerpos más adecuados.
Mapk1 sinónimo: 9030612K14Rik; AA407128; AU018647; C78273; ERK; Erk2; MAPK2; PRKM2; Prkm1; p41mapk; p42mapk; mitogen-activated protein kinase 1; ERK-2; ERT1; MAP kinase 1; MAP kinase 2; MAP kinase isoform p42; MAPK 1; MAPK 2; extracellular signal-regulated kinase 2; mitogen-activated protein kinase 2; p42-MAPK

Knockout validation
Cell Signaling Technology
conejo policlonal
  • immunohistochemistry knockout validation; ratón; fig 3
  • western blot knockout validation; ratón; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 9108) was used in immunohistochemistry knockout validation on ratón samples (fig 3) and in western blot knockout validation on ratón samples (fig 3). Sci Rep (2015) ncbi
Cell Signaling Technology
conejo monoclonal (20G11)
  • western blot knockout validation; ratón; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot knockout validation on ratón samples at 1:1000. Development (2007) ncbi
Santa Cruz Biotechnology
ratón monoclonal (33)
  • inmunoprecipitación; humanos; fig 3d
  • western blot; humanos; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136288) was used in inmunoprecipitación on humanos samples (fig 3d) and in western blot on humanos samples (fig 2b). Oncogenesis (2019) ncbi
ratón monoclonal
  • western blot; humanos; 1:5000; fig 1c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-514302) was used in western blot on humanos samples at 1:5000 (fig 1c). Nat Commun (2019) ncbi
ratón monoclonal (12A4)
  • western blot; ratón; fig 2d
  • western blot; humanos; fig 3a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa, sc-81457) was used in western blot on ratón samples (fig 2d) and in western blot on humanos samples (fig 3a). Oncogene (2019) ncbi
ratón monoclonal
  • western blot; humanos; fig 2e
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-514302) was used in western blot on humanos samples (fig 2e). Exp Mol Med (2018) ncbi
ratón monoclonal (D-2)
  • western blot; ratón; fig 3g, s7c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on ratón samples (fig 3g, s7c). Cell (2018) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 8a
Santa Cruz Biotechnology Mapk1 anticuerpos (santa cruz, sc-7383) was used in western blot on ratón samples (fig 8a). J Exp Med (2018) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 4d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology Inc, sc-7383) was used in western blot on ratón samples (fig 4d). J Clin Invest (2018) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000 (fig 5a). Restor Neurol Neurosci (2018) ncbi
ratón monoclonal (MK1)
  • western blot; ratón; 1:1000; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on ratón samples at 1:1000 (fig 5a). Restor Neurol Neurosci (2018) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, E-4) was used in western blot on humanos samples (fig 2b). Cell Death Dis (2018) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, E-4) was used in western blot on humanos samples (fig 5a). Cell Res (2018) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 6d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology Inc, SC-7383) was used in western blot on ratón samples (fig 6d). Neurotherapeutics (2018) ncbi
ratón monoclonal (12D4)
  • immunohistochemistry - frozen section; ratón; 1:20; fig s6f
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-81492) was used in immunohistochemistry - frozen section on ratón samples at 1:20 (fig s6f). Nat Commun (2018) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; fig 3b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on humanos samples (fig 3b). Int J Oncol (2018) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 5). Mol Med Rep (2018) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 6a). Oncotarget (2017) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; fig 7a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on humanos samples (fig 7a). Cancer Lett (2017) ncbi
ratón monoclonal (D-2)
  • western blot; ratón; 1:1000; fig s7a
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-1647) was used in western blot on ratón samples at 1:1000 (fig s7a). Nat Commun (2017) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 3g
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, SC-7383) was used in western blot on ratón samples (fig 3g). J Exp Med (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3e
Santa Cruz Biotechnology Mapk1 anticuerpos (SCB, E-4) was used in western blot on humanos samples (fig 3e). Cancer Res (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000; fig 3c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:1000 (fig 3c). Oncol Lett (2017) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 4b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples (fig 4b). J Exp Med (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 6a). Exp Mol Med (2017) ncbi
ratón monoclonal
  • western blot; humanos; fig 6a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in western blot on humanos samples (fig 6a). Exp Mol Med (2017) ncbi
ratón monoclonal
  • western blot; humanos; fig 6A
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in western blot on humanos samples (fig 6A). Sci Rep (2017) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-7383) was used in western blot on ratón samples (fig 6). J Ethnopharmacol (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-7383) was used in western blot on humanos samples at 1:500 (fig 2b). Toxicol In Vitro (2017) ncbi
ratón monoclonal
  • western blot; humanos; 1:200; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-514302) was used in western blot on humanos samples at 1:200 (fig 2b). Toxicol In Vitro (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-7383) was used in western blot on humanos samples at 1:500 (fig 2b). J Steroid Biochem Mol Biol (2017) ncbi
ratón monoclonal
  • western blot; humanos; 1:2000; fig 4a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-514302) was used in western blot on humanos samples at 1:2000 (fig 4a). Exp Ther Med (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 1a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, D-2) was used in western blot on humanos samples (fig 1a). Nucleic Acids Res (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 2e
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples at 1:500 (fig 2e). Nat Commun (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 1c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on humanos samples (fig 1c). Mol Carcinog (2017) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 1a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, D2) was used in western blot on humanos samples (fig 1a). J Biol Chem (2017) ncbi
ratón monoclonal (E-4)
  • immunohistochemistry - paraffin section; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in immunohistochemistry - paraffin section on ratón samples . Acta Histochem (2017) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:1000; fig 1a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:1000 (fig 1a). Int J Cancer (2017) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 5b). Int J Mol Med (2016) ncbi
ratón monoclonal (MK1)
  • western blot; ratón; fig 3a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on ratón samples (fig 3a). Int J Mol Sci (2016) ncbi
ratón monoclonal (E-4)
  • western blot; rata; fig 6b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, Sc-7383) was used in western blot on rata samples (fig 6b). Physiol Rep (2016) ncbi
ratón monoclonal
  • western blot; humanos; 1:1500; fig 4a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in western blot on humanos samples at 1:1500 (fig 4a). Oncol Lett (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1500; fig 4a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:1500 (fig 4a). Oncol Lett (2016) ncbi
ratón monoclonal
  • western blot; ratón; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, SC-514302) was used in western blot on ratón samples (fig 3). Blood Cancer J (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, SC-7383) was used in western blot on ratón samples (fig 3). Blood Cancer J (2016) ncbi
ratón monoclonal (pT202/pY204.22A)
  • immunohistochemistry - paraffin section; humanos; fig 7a
  • western blot; humanos; 1:500; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in immunohistochemistry - paraffin section on humanos samples (fig 7a) and in western blot on humanos samples at 1:500 (fig 5a). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; tbl 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:500 (tbl 1). J Neuroinflammation (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6e
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, 7383) was used in western blot on humanos samples (fig 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 4b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 4b). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000 (fig 5a). Mol Cell Biochem (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 3a). J Cereb Blood Flow Metab (2017) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 7a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples (fig 7a). J Immunol (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 4). Mol Ther Methods Clin Dev (2016) ncbi
ratón monoclonal
  • western blot; humanos; 1:1000; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in western blot on humanos samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; 1:1000; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on humanos samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on humanos samples (fig 5). Cell Rep (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 1a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on humanos samples (fig 1a). J Biol Chem (2016) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; rata; fig 5c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-136521) was used in western blot on rata samples (fig 5c). PLoS ONE (2016) ncbi
ratón monoclonal (12A4)
  • inmunoprecipitación; rata; fig 5c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-81457) was used in inmunoprecipitación on rata samples (fig 5c). PLoS ONE (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:1000 (fig 2). Mol Med Rep (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:1000; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:1000 (fig 2). Mol Med Rep (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000 (fig 2). Cell Death Dis (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 3). Oncol Lett (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 2a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples (fig 2a). J Cell Biol (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 2a). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3h
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E4) was used in western blot on humanos samples (fig 3h). Genes Cancer (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; fig 6b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples (fig 6b). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000; fig 5d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples at 1:1000 (fig 5d). Oncotarget (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:200; fig 6A
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:200 (fig 6A). Front Pharmacol (2016) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; 1:200; fig 6A
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on humanos samples at 1:200 (fig 6A). Front Pharmacol (2016) ncbi
ratón monoclonal (D-2)
  • western blot; ratón; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on ratón samples (fig 1). PLoS ONE (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:1000; fig s4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:1000 (fig s4). Nat Commun (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc1647) was used in western blot on humanos samples (fig 5a). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
ratón monoclonal (MK1)
  • western blot; ratón; 1:1000; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on ratón samples at 1:1000 (fig 4). Mol Med Rep (2016) ncbi
ratón monoclonal (E-4)
  • western blot; rata; 1:500; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, 7383) was used in western blot on rata samples at 1:500 (fig 5a). Int J Endocrinol (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 7c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples (fig 7c). J Biol Chem (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc1647) was used in western blot on humanos samples (fig 4). BMC Complement Altern Med (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc7383) was used in western blot on humanos samples (fig 4). BMC Complement Altern Med (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig s2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on ratón samples (fig s2). Sci Rep (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:500; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:500 (fig 3). Oncoimmunology (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 6a). J Immunol Res (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:200; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:200 (fig 5). Genes Cancer (2016) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; 1:200; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on humanos samples at 1:200 (fig 5). Genes Cancer (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa cruz, sc-7383) was used in western blot on humanos samples (fig 5). BMC Cancer (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 2). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 6). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • inmunocitoquímica; ratón; 1:50; fig 5
  • inmunohistoquímica; ratón; 1:50; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in inmunocitoquímica on ratón samples at 1:50 (fig 5) and in inmunohistoquímica on ratón samples at 1:50 (fig 5). Nat Commun (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 3c). Oncotarget (2016) ncbi
ratón monoclonal
  • western blot; rata; fig 10a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in western blot on rata samples (fig 10a). Int J Mol Med (2016) ncbi
ratón monoclonal
  • inmunohistoquímica; ratón; 1:500; fig 3d
  • western blot; ratón; 1:500; fig 3d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-514302) was used in inmunohistoquímica on ratón samples at 1:500 (fig 3d) and in western blot on ratón samples at 1:500 (fig 3d). J Neurosci (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 5
  • western blot; humanos; fig 8
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, E-4) was used in western blot on ratón samples (fig 5) and in western blot on humanos samples (fig 8). J Exp Med (2016) ncbi
ratón monoclonal (12D4)
  • western blot; rata; 1:500; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-81492) was used in western blot on rata samples at 1:500 (fig 6). Exp Ther Med (2016) ncbi
ratón monoclonal (C-8)
  • western blot; ratón; fig 8f
Santa Cruz Biotechnology Mapk1 anticuerpos (santa cruz, C-8) was used in western blot on ratón samples (fig 8f). Front Endocrinol (Lausanne) (2015) ncbi
ratón monoclonal (12D4)
  • immunohistochemistry - paraffin section; ratón; 1:100; fig 5
  • western blot; ratón; 1:1000; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-81492) was used in immunohistochemistry - paraffin section on ratón samples at 1:100 (fig 5) and in western blot on ratón samples at 1:1000 (fig 5). Sci Rep (2016) ncbi
ratón monoclonal (MK1)
  • western blot; ratón; 1:1000; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on ratón samples at 1:1000 (fig 5). Sci Rep (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 7e
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples (fig 7e). J Immunol (2016) ncbi
ratón monoclonal (E-4)
  • inmunohistoquímica; ratón; fig 7
  • western blot; rata; fig 1d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc7383) was used in inmunohistoquímica on ratón samples (fig 7) and in western blot on rata samples (fig 1d). J Cell Mol Med (2016) ncbi
ratón monoclonal (E-4)
  • ELISA; humanos; 1:500; fig 10
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in ELISA on humanos samples at 1:500 (fig 10). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 7
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 7). Oncotarget (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 7
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on humanos samples (fig 7). Oncotarget (2016) ncbi
ratón monoclonal (E-4)
  • western blot; rata; 1:500; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruze, sc-7383) was used in western blot on rata samples at 1:500 (fig 6). PLoS ONE (2016) ncbi
ratón monoclonal (12A4)
  • western blot; humanos; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc81457) was used in western blot on humanos samples (fig 2). Breast Cancer Res (2016) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, sc-7383) was used in western blot on ratón samples (fig 3). Drug Des Devel Ther (2015) ncbi
ratón monoclonal (D-2)
  • western blot; ratón; 1:2000; fig s3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on ratón samples at 1:2000 (fig s3). Clin Cancer Res (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 10
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:500 (fig 10). J Neuroinflammation (2015) ncbi
ratón monoclonal (E-4)
  • immunohistochemistry - paraffin section; ratón; 1:1000; fig s7
  • western blot; ratón; 1:1000; fig 2
  • western blot; humanos; 1:1000; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in immunohistochemistry - paraffin section on ratón samples at 1:1000 (fig s7), in western blot on ratón samples at 1:1000 (fig 2) and in western blot on humanos samples at 1:1000 (fig 2). Nat Commun (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5c
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 5c). Mol Cells (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 5a). Apoptosis (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig S3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig S3). Oncotarget (2016) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples (fig 3). Biomed Res Int (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 7
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 7). Oncotarget (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig s3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples (fig s3). J Immunol Res (2015) ncbi
ratón monoclonal (D-2)
  • inmunocitoquímica; ratón; 1:200; fig 2
  • western blot; ratón; 1:1000; fig 2
  • inmunohistoquímica; common platanna; 1:50; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, D-2) was used in inmunocitoquímica on ratón samples at 1:200 (fig 2), in western blot on ratón samples at 1:1000 (fig 2) and in inmunohistoquímica on common platanna samples at 1:50 (fig 5). PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 8
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on humanos samples (fig 8). Oncotarget (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 6a). Oncogene (2016) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC7383) was used in western blot on humanos samples . Int J Cancer (2016) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; 1:2000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on humanos samples at 1:2000. Proc Natl Acad Sci U S A (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 3c
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, sc-7383) was used in western blot on humanos samples (fig 3c). Oncogene (2016) ncbi
ratón monoclonal (H-9)
  • western blot; humanos; fig 3a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-271451) was used in western blot on humanos samples (fig 3a). Cancer Cell Int (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:8000; fig 7
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-135900) was used in western blot on humanos samples at 1:8000 (fig 7). Int J Mol Sci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; Sus; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on Sus samples (fig 2). J Immunol (2015) ncbi
ratón monoclonal (12D4)
  • western blot; humanos; fig 6b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-81492) was used in western blot on humanos samples (fig 6b). BMC Cancer (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples (fig 3). Cancer Sci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Cardiovasc Res (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Laboratories, SC7383) was used in western blot on humanos samples . PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; fig 6b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E-4) was used in western blot on ratón samples (fig 6b). J Exp Med (2015) ncbi
ratón monoclonal (E-4)
  • western blot; rata; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on rata samples at 1:1000. Int J Neuropsychopharmacol (2015) ncbi
ratón monoclonal (E-4)
  • immunohistochemistry - free floating section; rata
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in immunohistochemistry - free floating section on rata samples . Free Radic Biol Med (2015) ncbi
ratón monoclonal (33)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136288) was used in western blot on humanos samples at 1:500. Mol Med Rep (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 2). J Biomed Sci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-7383) was used in western blot on ratón samples . Virol Sin (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 1). PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa-Cruz, sc-7383) was used in western blot on humanos samples at 1:1000 (fig 6). PLoS Pathog (2015) ncbi
ratón monoclonal (MK1)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on ratón samples . Neuropharmacology (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples . Neuropharmacology (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; fig 4d
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-135900) was used in western blot on humanos samples (fig 4d). Oncotarget (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on humanos samples . PLoS ONE (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-135900) was used in western blot on humanos samples . PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000. Cancer Res (2015) ncbi
ratón monoclonal (D-2)
  • western blot; ratón; fig s4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on ratón samples (fig s4). Br J Cancer (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 6). Oncotarget (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig s8
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig s8). Autophagy (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 7
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-7383) was used in western blot on humanos samples (fig 7). PLoS ONE (2015) ncbi
ratón monoclonal (MK1)
  • inmunoprecipitación de la cromatina ; humanos; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotech, sc-135900) was used in inmunoprecipitación de la cromatina on humanos samples (fig 6). PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples at 1:500. Neuroscience (2015) ncbi
ratón monoclonal (MK1)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-135900) was used in western blot on ratón samples . J Nutr Biochem (2015) ncbi
ratón monoclonal (12D4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-81492) was used in western blot on ratón samples . J Nutr Biochem (2015) ncbi
ratón monoclonal (E-4)
  • western blot; rata; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on rata samples (fig 5). Mar Drugs (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-7383) was used in western blot on humanos samples (fig 5). Br J Nutr (2015) ncbi
ratón monoclonal (E-4)
  • western blot; rata; 1:500; fig 4g
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on rata samples at 1:500 (fig 4g). J Cell Sci (2015) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; humanos; fig 6
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-136521) was used in western blot on humanos samples (fig 6). Curr Mol Med (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E-4) was used in western blot on humanos samples . Cell Mol Life Sci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples at 1:500. Cell Signal (2015) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, sc-1647) was used in western blot on humanos samples (fig 1). Nucleic Acids Res (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, sc-7383) was used in western blot on humanos samples at 1:500 (fig 2). PLoS ONE (2015) ncbi
ratón monoclonal (12D4)
  • western blot; ratón; 1:500; fig 4a
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-81492) was used in western blot on ratón samples at 1:500 (fig 4a). Biochim Biophys Acta (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5f
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 5f). Cell Commun Signal (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-7383) was used in western blot on humanos samples at 1:500 (fig 4). Nat Commun (2015) ncbi
ratón monoclonal (E-4)
  • inmunocitoquímica; ratón
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnologies, SC-7383) was used in inmunocitoquímica on ratón samples and in western blot on ratón samples . Endocrinology (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig s21
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa, sc-7383) was used in western blot on humanos samples (fig s21). PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:1000. Exp Ther Med (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-135900) was used in western blot on humanos samples . Mutat Res (2015) ncbi
ratón monoclonal (D-2)
  • inmunoprecipitación; humanos; fig 3
  • inmunocitoquímica; humanos; fig 3
  • western blot; humanos; fig 4
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, sc-1647) was used in inmunoprecipitación on humanos samples (fig 3), in inmunocitoquímica on humanos samples (fig 3) and in western blot on humanos samples (fig 4). Cell Death Differ (2015) ncbi
ratón monoclonal (E-4)
  • inmunoprecipitación; humanos; fig 3
  • western blot; humanos; fig s9
Santa Cruz Biotechnology Mapk1 anticuerpos (santa Cruz, sc-7383) was used in inmunoprecipitación on humanos samples (fig 3) and in western blot on humanos samples (fig s9). Cell Death Differ (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples at 1:1000. Mol Cell Endocrinol (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Leuk Lymphoma (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples . Leuk Lymphoma (2015) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-136521) was used in western blot on rata samples at 1:200. PLoS ONE (2015) ncbi
ratón monoclonal (MK1)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on rata samples at 1:200. PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E4) was used in western blot on humanos samples (fig 2). Cell Res (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples . PLoS ONE (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples (fig 2). Cell Cycle (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 2b
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 2b). Environ Health Perspect (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC7383) was used in western blot on ratón samples at 1:200. Mol Cell Biol (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, E-4) was used in western blot on humanos samples (fig 1). J Biol Chem (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Oncotarget (2015) ncbi
ratón monoclonal (E-4)
  • inmunohistoquímica; humanos; 1:100
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in inmunohistoquímica on humanos samples at 1:100. Cancer Lett (2015) ncbi
ratón monoclonal (D-2)
  • inmunocitoquímica; humanos; 1:200
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-1647) was used in inmunocitoquímica on humanos samples at 1:200 and in western blot on humanos samples . PLoS ONE (2014) ncbi
ratón monoclonal (MK1)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on rata samples at 1:200. Life Sci (2015) ncbi
ratón monoclonal (12D4)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-81492) was used in western blot on rata samples at 1:200. Life Sci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E-4) was used in western blot on humanos samples at 1:1000. Tumour Biol (2015) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:1000. Nat Neurosci (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Biochim Biophys Acta (2015) ncbi
ratón monoclonal (MK1)
  • western blot; rata; fig 3
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on rata samples (fig 3). Biochem Pharmacol (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples at 1:1000. Exp Cell Res (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples at 1:1000. Exp Cell Res (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Oncotarget (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, 7383) was used in western blot on humanos samples (fig 1). Cell Cycle (2014) ncbi
ratón monoclonal (E-4)
  • western blot; ratón; 1:500; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on ratón samples at 1:500 (fig 2). Nat Commun (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples . PLoS ONE (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:1000. J Biol Chem (2014) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples at 1:1000. J Biol Chem (2014) ncbi
ratón monoclonal (E-4)
  • immunohistochemistry - paraffin section; rata
  • western blot; rata
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, E-4, sc-7383) was used in immunohistochemistry - paraffin section on rata samples and in western blot on rata samples . Hippocampus (2015) ncbi
ratón monoclonal (MK1)
  • western blot; humanos; 1:800
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, SC-135900) was used in western blot on humanos samples at 1:800. Growth Factors (2015) ncbi
ratón monoclonal (E-4)
  • western blot; kangaroo rats; 1:200; fig 2
Santa Cruz Biotechnology Mapk1 anticuerpos (santa cruz, sc-7383) was used in western blot on kangaroo rats samples at 1:200 (fig 2). Cell Mol Neurobiol (2015) ncbi
ratón monoclonal (12D4)
  • inmunocitoquímica; humanos; 1:300
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotech, sc-81492) was used in inmunocitoquímica on humanos samples at 1:300. Biores Open Access (2014) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples . Biometals (2014) ncbi
ratón monoclonal (D-2)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-1647) was used in western blot on humanos samples . Cancer Res (2014) ncbi
ratón monoclonal (MK1)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-135900) was used in western blot on ratón samples . J Am Heart Assoc (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples . J Virol (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples at 1:1000. BMC Cancer (2014) ncbi
ratón monoclonal (E-4)
  • immunohistochemistry - paraffin section; humanos; 1:100
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc7383) was used in immunohistochemistry - paraffin section on humanos samples at 1:100. J Gastroenterol Hepatol (2014) ncbi
ratón monoclonal (E-4)
  • western blot; vacas
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on vacas samples . Biomed Res Int (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Angiogenesis (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Int J Oncol (2014) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on humanos samples . Int J Oncol (2014) ncbi
ratón monoclonal (D-2)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-1647) was used in western blot on humanos samples . Pigment Cell Melanoma Res (2014) ncbi
ratón monoclonal (MK1)
  • western blot; conejo; 1:1,000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on conejo samples at 1:1,000. Stem Cells Dev (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples . Mol Cell Endocrinol (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on humanos samples . Mol Cancer Ther (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000; fig 1
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa, sc-7383) was used in western blot on humanos samples at 1:1000 (fig 1). Mol Cancer Ther (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples . Oncogene (2015) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-7383) was used in western blot on humanos samples . Biochem Pharmacol (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc7383) was used in western blot on humanos samples . Mol Cell Biol (2014) ncbi
ratón monoclonal (E-4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples . Electrophoresis (2014) ncbi
ratón monoclonal (E-4)
  • western blot; ratón
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on ratón samples . Exp Mol Med (2014) ncbi
ratón monoclonal (E-4)
  • western blot; tomato
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, SC-7383) was used in western blot on tomato samples . J Agric Food Chem (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:1000
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, E-4) was used in western blot on humanos samples at 1:1000. Mol Cancer Res (2014) ncbi
ratón monoclonal (E-4)
  • inmunocitoquímica; rata
  • western blot; rata
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in inmunocitoquímica on rata samples and in western blot on rata samples . Glia (2014) ncbi
ratón monoclonal (E-4)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples . J Biol Chem (2014) ncbi
ratón monoclonal (pT202/pY204.22A)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-136521) was used in western blot on rata samples at 1:200. Exp Cell Res (2014) ncbi
ratón monoclonal (MK1)
  • western blot; rata; 1:200
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-135900) was used in western blot on rata samples at 1:200. Exp Cell Res (2014) ncbi
ratón monoclonal (D-2)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, D2) was used in western blot on humanos samples . J Biol Chem (2013) ncbi
ratón monoclonal (MK1)
  • western blot; humanos
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-135900) was used in western blot on humanos samples . Cancer Cell Int (2013) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on humanos samples at 1:500. Mol Neurodegener (2012) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:500. Mol Neurodegener (2012) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples at 1:500. J Neuroimmunol (2013) ncbi
ratón monoclonal (D-2)
  • western blot; humanos; 1:500
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-1647) was used in western blot on humanos samples at 1:500. J Neuroimmunol (2013) ncbi
ratón monoclonal (E-4)
  • western blot; rata
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz Biotechnology, sc-7383) was used in western blot on rata samples . Lab Anim Res (2012) ncbi
ratón monoclonal (E-4)
  • western blot; rata; 1:1000; fig 3b
Santa Cruz Biotechnology Mapk1 anticuerpos (SantaCruz, E-4) was used in western blot on rata samples at 1:1000 (fig 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
ratón monoclonal (E-4)
  • western blot; humanos; fig 5
Santa Cruz Biotechnology Mapk1 anticuerpos (Santa Cruz, sc-7383) was used in western blot on humanos samples (fig 5). Leukemia (2011) ncbi
Invitrogen
ratón monoclonal (MILAN8R)
  • citometría de flujo; humanos; fig s5
Invitrogen Mapk1 anticuerpos (eBioscience, MILAN8R) was used in citometría de flujo on humanos samples (fig s5). Eur J Immunol (2018) ncbi
conejo policlonal
  • western blot; rata; fig 4b
Invitrogen Mapk1 anticuerpos (Thermo Fisher Scientific, 44-654G) was used in western blot on rata samples (fig 4b). Biosci Rep (2018) ncbi
conejo monoclonal (B.742.5)
  • western blot; humanos; fig 4
  • western blot; Stylophora pistillata; 1:1000; fig 2a
Invitrogen Mapk1 anticuerpos (ThermoFisher, MA5-15174) was used in western blot on humanos samples (fig 4) and in western blot on Stylophora pistillata samples at 1:1000 (fig 2a). F1000Res (2017) ncbi
ratón monoclonal (3F8B3)
  • western blot; Stylophora pistillata; 1:1000; fig 2a
  • western blot; humanos; fig 4
Invitrogen Mapk1 anticuerpos (ThermoFisher, MA5-15605) was used in western blot on Stylophora pistillata samples at 1:1000 (fig 2a) and in western blot on humanos samples (fig 4). F1000Res (2017) ncbi
ratón monoclonal (ERK-7D8)
  • inmunoprecipitación; humanos; fig 5a
  • western blot; humanos; fig 5a
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in inmunoprecipitación on humanos samples (fig 5a) and in western blot on humanos samples (fig 5a). Sci Rep (2017) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; 1:500; fig 3a
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in western blot on humanos samples at 1:500 (fig 3a). Sci Rep (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 1d
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-654G) was used in western blot on humanos samples (fig 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 1d
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in western blot on humanos samples (fig 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; fig 5e
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in western blot on humanos samples (fig 5e). MAbs (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 3b
Invitrogen Mapk1 anticuerpos (Invitrogen, 61-7400) was used in western blot on humanos samples (fig 3b). Oncotarget (2016) ncbi
conejo policlonal
  • western blot; African green monkey; fig 5c
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on African green monkey samples (fig 5c). J Biol Chem (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 1b
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in western blot on humanos samples (fig 1b). Int J Oncol (2016) ncbi
conejo policlonal
  • western blot; ratón; fig 5e
  • western blot; humanos; fig s3b
Invitrogen Mapk1 anticuerpos (Life Technologies, 44-654G) was used in western blot on ratón samples (fig 5e) and in western blot on humanos samples (fig s3b). Nat Immunol (2016) ncbi
conejo policlonal
  • western blot; ratón; fig 5e
  • western blot; humanos; fig s3b
Invitrogen Mapk1 anticuerpos (Life Technologies, 44-680G) was used in western blot on ratón samples (fig 5e) and in western blot on humanos samples (fig s3b). Nat Immunol (2016) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; 1:2000; fig 2a
Invitrogen Mapk1 anticuerpos (Thermo Fisher Scientific, ERK-7D8) was used in western blot on humanos samples at 1:2000 (fig 2a). Oncotarget (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Invitrogen Mapk1 anticuerpos (Life technologies, 44-654-G) was used in western blot on humanos samples (fig 3). Int J Mol Sci (2016) ncbi
ratón monoclonal (MILAN8R)
  • citometría de flujo; ratón
Invitrogen Mapk1 anticuerpos (eBioscience, MILAN8R) was used in citometría de flujo on ratón samples . Oncotarget (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 4
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in western blot on humanos samples (fig 4). Nat Commun (2016) ncbi
conejo policlonal
  • immunohistochemistry - paraffin section; humanos; fig 3
  • western blot; humanos; fig 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in immunohistochemistry - paraffin section on humanos samples (fig 3) and in western blot on humanos samples (fig 1). BMC Cancer (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 6
Invitrogen Mapk1 anticuerpos (Invitrogen Biosource, 44-654G) was used in western blot on humanos samples (fig 6). J Biol Chem (2016) ncbi
conejo policlonal
  • western blot; ratón; 1:5000; fig 5
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on ratón samples at 1:5000 (fig 5). Neuropharmacology (2016) ncbi
conejo policlonal
  • western blot; rata; fig 5
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in western blot on rata samples (fig 5). Mol Biol Cell (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 3
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in western blot on humanos samples at 1:1000 (fig 3). Int J Mol Sci (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Invitrogen Mapk1 anticuerpos (Thermo Fisher Scientific, 44-680G) was used in western blot on humanos samples (fig 3). Biomed Res Int (2015) ncbi
conejo policlonal
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Life Technologies, 44-654-G) was used in western blot on humanos samples . Oncotarget (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in western blot on humanos samples (fig 1). Oncogene (2016) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; fig 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in western blot on humanos samples (fig 1). Oncogene (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in western blot on humanos samples at 1:1000. Biochem Pharmacol (2015) ncbi
conejo policlonal
  • inmunocitoquímica; rata; fig 1
Invitrogen Mapk1 anticuerpos (Life Technologies, 44680G) was used in inmunocitoquímica on rata samples (fig 1). PLoS ONE (2015) ncbi
conejo policlonal
  • western blot; ratón; 1:2000; fig 5b
Invitrogen Mapk1 anticuerpos (Biosource, 44-680G) was used in western blot on ratón samples at 1:2000 (fig 5b). Nat Cell Biol (2015) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón; 1:500; fig 5b
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on ratón samples at 1:500 (fig 5b). Nat Cell Biol (2015) ncbi
conejo policlonal
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Invitrogen, CA 61-7400) was used in western blot on humanos samples . Oncotarget (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 4
Invitrogen Mapk1 anticuerpos (Invitrogen Life Technologies, 44680G) was used in western blot on humanos samples (fig 4). Cell Death Dis (2015) ncbi
conejo policlonal
  • western blot; humanos; fig 4
Invitrogen Mapk1 anticuerpos (Invitrogen Life Technologies, 44-654G) was used in western blot on humanos samples (fig 4). Cell Death Dis (2015) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on humanos samples . Biochim Biophys Acta (2015) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in western blot on ratón samples . PLoS ONE (2014) ncbi
conejo policlonal
  • western blot; ratón; 1:5000; fig 2
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on ratón samples at 1:5000 (fig 2). Front Cell Neurosci (2014) ncbi
conejo monoclonal (K.913.4)
  • immunohistochemistry - paraffin section; de pez cebra
  • western blot; de pez cebra
Invitrogen Mapk1 anticuerpos (Pierce, MA5-15134) was used in immunohistochemistry - paraffin section on de pez cebra samples and in western blot on de pez cebra samples . Cell Res (2014) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Zymed Laboratories, 13-6200) was used in western blot on humanos samples . PLoS ONE (2014) ncbi
conejo policlonal
  • western blot; ratón; 1:5000
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on ratón samples at 1:5000. Front Integr Neurosci (2014) ncbi
conejo policlonal
  • western blot; rata
Invitrogen Mapk1 anticuerpos (Life Technologies, 617400) was used in western blot on rata samples . Brain Res (2014) ncbi
conejo policlonal
  • inmunohistoquímica; humanos; 1:50; fig 6
  • western blot; humanos; 1:1000; fig 4
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in inmunohistoquímica on humanos samples at 1:50 (fig 6) and in western blot on humanos samples at 1:1000 (fig 4). Arch Immunol Ther Exp (Warsz) (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Invitrogen Mapk1 anticuerpos (BioSource, 44-680G) was used in western blot on humanos samples at 1:1000. Rheumatology (Oxford) (2014) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
Invitrogen Mapk1 anticuerpos (BioSource, 44-654G) was used in western blot on humanos samples at 1:1000. Rheumatology (Oxford) (2014) ncbi
conejo policlonal
  • western blot; humanos; fig 7
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in western blot on humanos samples (fig 7). PLoS ONE (2013) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; 1:2500; tbl 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 136200) was used in western blot on rata samples at 1:2500 (tbl 1). Amino Acids (2012) ncbi
conejo policlonal
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (BioSource, 44654G) was used in western blot on humanos samples . Nature (2011) ncbi
conejo policlonal
  • western blot; ratón; fig 4
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on ratón samples (fig 4). J Neuroimmunol (2011) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on humanos samples . Biochim Biophys Acta (2011) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; fig 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 13-6200) was used in western blot on humanos samples (fig 1). J Endocrinol Invest (2011) ncbi
conejo policlonal
  • inmunocitoquímica; Caenorhabditis elegans; fig 7
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in inmunocitoquímica on Caenorhabditis elegans samples (fig 7). Nat Cell Biol (2011) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used in western blot on humanos samples (fig 3). J Biol Chem (2011) ncbi
conejo policlonal
  • inmunohistoquímica; humanos; 0.5 ug/ul; fig 1
Invitrogen Mapk1 anticuerpos (Biosource, 44-680G) was used in inmunohistoquímica on humanos samples at 0.5 ug/ul (fig 1). Eur J Oral Sci (2010) ncbi
conejo policlonal
  • inmunocitoquímica; rata; 1:50; fig 3
  • western blot; rata; fig 3
Invitrogen Mapk1 anticuerpos (Biosource, 44-680G) was used in inmunocitoquímica on rata samples at 1:50 (fig 3) and in western blot on rata samples (fig 3). PLoS ONE (2010) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 1
Invitrogen Mapk1 anticuerpos (Invitrogen, 44680G) was used in western blot on humanos samples at 1:1000 (fig 1). Mol Cancer Res (2010) ncbi
conejo policlonal
  • western blot; ratón; fig 4
Invitrogen Mapk1 anticuerpos (Biosource, 44-654G) was used in western blot on ratón samples (fig 4). Mol Cell Biol (2009) ncbi
conejo policlonal
  • western blot; ratón; fig 4
Invitrogen Mapk1 anticuerpos (Biosource, 44-680G) was used in western blot on ratón samples (fig 4). Mol Cell Biol (2009) ncbi
conejo policlonal
  • western blot; humanos; fig 3
Invitrogen Mapk1 anticuerpos (Bio-Source, 44-654G) was used in western blot on humanos samples (fig 3). Ann Rheum Dis (2010) ncbi
conejo policlonal
  • western blot; humanos
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used in western blot on humanos samples . Oncogene (2009) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used . J Neuroimmunol (2008) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (BioSource, 44-680G) was used . J Oral Pathol Med (2008) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Invitrogen, 44-680G) was used . Anal Biochem (2008) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Biosource, 44-680) was used . Exp Cell Res (2008) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used . Mol Cell Biol (2008) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón; fig 2a
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on ratón samples (fig 2a). Nat Immunol (2006) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Biosource, 44-680G) was used . J Cell Biochem (2007) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; fig 6
Invitrogen Mapk1 anticuerpos (Zymed, ERK-7D8) was used in western blot on rata samples (fig 6). Cardiovasc Res (2006) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Biosources, 44-680G) was used . Brain Res (2006) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (BioSource, 44-680G) was used . Arthritis Rheum (2005) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Zymed, 61-7400) was used . Am J Pathol (2005) ncbi
conejo policlonal
Invitrogen Mapk1 anticuerpos (Zymed, noca) was used . J Biol Chem (2005) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; fig 7
Invitrogen Mapk1 anticuerpos (Zymed, ERK-7D8) was used in western blot on rata samples (fig 7). J Biomed Sci (2005) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; 1:5000; fig 2
Invitrogen Mapk1 anticuerpos (Zymed, ERK-7D8) was used in western blot on rata samples at 1:5000 (fig 2). Life Sci (2005) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; fig 5
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200,) was used in western blot on rata samples (fig 5). J Biol Chem (2004) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; fig 2
Invitrogen Mapk1 anticuerpos (Zymed Laboratories, clone ERK-7D8) was used in western blot on humanos samples (fig 2). J Neurochem (2000) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on rata samples . J Clin Invest (1999) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón; fig 1, 2
Invitrogen Mapk1 anticuerpos (Zymed, 13-6200) was used in western blot on ratón samples (fig 1, 2). Neurochem Res (1998) ncbi
ratón monoclonal (ERK-7D8)
  • inmunoprecipitación; ratón
  • western blot; ratón
Invitrogen Mapk1 anticuerpos (Zymed, ERK-7D8) was used in inmunoprecipitación on ratón samples and in western blot on ratón samples . Proc Natl Acad Sci U S A (1998) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; common platanna; 1:1000; fig 1
Invitrogen Mapk1 anticuerpos (Zymed, ERK-7D8) was used in western blot on common platanna samples at 1:1000 (fig 1). Science (1998) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; humanos; fig 3
Invitrogen Mapk1 anticuerpos (Zymed Laboratories, clone ERK-7D8) was used in western blot on humanos samples (fig 3). J Biol Chem (1997) ncbi
Abcam
conejo monoclonal (EPR18444)
  • western blot; humanos; fig 5b
Abcam Mapk1 anticuerpos (Abcam, ab214036) was used in western blot on humanos samples (fig 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
conejo policlonal
  • western blot; humanos; fig 5b
Abcam Mapk1 anticuerpos (Abcam, ab115799) was used in western blot on humanos samples (fig 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
conejo monoclonal (EPR19401)
  • western blot; rata; 1:1000; fig 5c
Abcam Mapk1 anticuerpos (Abcam, ab201015) was used in western blot on rata samples at 1:1000 (fig 5c). Exp Ther Med (2017) ncbi
conejo policlonal
  • western blot; humanos; 1:100; fig 5a
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on humanos samples at 1:100 (fig 5a). Exp Ther Med (2017) ncbi
conejo monoclonal (E460)
  • western blot; humanos; 1:100; fig 5b
Abcam Mapk1 anticuerpos (Abcam, ab32081) was used in western blot on humanos samples at 1:100 (fig 5b). Exp Ther Med (2017) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; rata; 1:1000; fig 4b
Abcam Mapk1 anticuerpos (Abcam, ab54230) was used in western blot on rata samples at 1:1000 (fig 4b). Braz J Med Biol Res (2017) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón; 1:500; fig 3a
Abcam Mapk1 anticuerpos (Abcam, ab54230) was used in western blot on ratón samples at 1:500 (fig 3a). J Mol Neurosci (2017) ncbi
ratón monoclonal (MAPK-YT)
  • inmunocitoquímica; humanos; 1:200; fig 6d
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in inmunocitoquímica on humanos samples at 1:200 (fig 6d). J Cell Sci (2017) ncbi
conejo policlonal
  • western blot; humanos; 1:500; fig 4a
Abcam Mapk1 anticuerpos (Abcam, ab196883) was used in western blot on humanos samples at 1:500 (fig 4a). Exp Ther Med (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 4a
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on humanos samples at 1:1000 (fig 4a). Oncotarget (2017) ncbi
conejo policlonal
  • western blot; rata
Abcam Mapk1 anticuerpos (Abcam, Ab17942) was used in western blot on rata samples . PLoS ONE (2016) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; rata
Abcam Mapk1 anticuerpos (Abcam, Ab50011) was used in western blot on rata samples . PLoS ONE (2016) ncbi
conejo monoclonal (E460)
  • immunohistochemistry - paraffin section; humanos; fig 1c
  • western blot; humanos; fig 6f
Abcam Mapk1 anticuerpos (Abcam, ab32081) was used in immunohistochemistry - paraffin section on humanos samples (fig 1c) and in western blot on humanos samples (fig 6f). Oncotarget (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 6
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on humanos samples (fig 6). Sci Rep (2016) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; humanos; fig 6
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in western blot on humanos samples (fig 6). Sci Rep (2016) ncbi
conejo policlonal
  • western blot; rata; fig 4
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on rata samples (fig 4). Mol Brain (2016) ncbi
conejo monoclonal (EPR19401)
  • western blot; rata; fig 4
Abcam Mapk1 anticuerpos (Abcam, ab201015) was used in western blot on rata samples (fig 4). Mol Brain (2016) ncbi
conejo policlonal
  • western blot; pollo; 1:200; fig 2b
Abcam Mapk1 anticuerpos (Abcam, ab79853) was used in western blot on pollo samples at 1:200 (fig 2b). Biometals (2016) ncbi
conejo policlonal
  • inmunocitoquímica; humanos; fig 2
Abcam Mapk1 anticuerpos (AbCam, Ab17942) was used in inmunocitoquímica on humanos samples (fig 2). Cancer Biol Ther (2016) ncbi
ratón monoclonal (MAPK-YT)
  • inmunocitoquímica; humanos; fig 2
  • western blot; humanos; fig 5
Abcam Mapk1 anticuerpos (AbCam, Ab50011) was used in inmunocitoquímica on humanos samples (fig 2) and in western blot on humanos samples (fig 5). Cancer Biol Ther (2016) ncbi
ratón monoclonal (MAPK-YT)
  • immunohistochemistry - paraffin section; humanos; 1:100; fig 2
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in immunohistochemistry - paraffin section on humanos samples at 1:100 (fig 2). Oncotarget (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 1d
Abcam Mapk1 anticuerpos (abcam, 115799) was used in western blot on humanos samples (fig 1d). Mar Drugs (2015) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; humanos; fig 1d
Abcam Mapk1 anticuerpos (abcam, 50011) was used in western blot on humanos samples (fig 1d). Mar Drugs (2015) ncbi
conejo policlonal
  • inmunocitoquímica; ratón; 1:200; fig 3
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in inmunocitoquímica on ratón samples at 1:200 (fig 3). PLoS ONE (2015) ncbi
ratón monoclonal (MAPK-YT)
  • inmunohistoquímica; humanos; fig 1
Abcam Mapk1 anticuerpos (abcam, ab50011) was used in inmunohistoquímica on humanos samples (fig 1). Mol Cancer (2015) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 4d
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on humanos samples at 1:1000 (fig 4d). Oncotarget (2015) ncbi
conejo policlonal
  • western blot; ratón; 1:1000; fig 4a,b
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on ratón samples at 1:1000 (fig 4a,b). PLoS ONE (2015) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; humanos; fig 6
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in western blot on humanos samples (fig 6). Biomaterials (2015) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; humanos; fig 2a
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in western blot on humanos samples (fig 2a). Med Oncol (2015) ncbi
ratón monoclonal (MAPK-YT)
  • immunohistochemistry - paraffin section; de pez cebra ; 1:300
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in immunohistochemistry - paraffin section on de pez cebra samples at 1:300. J Immunol (2015) ncbi
conejo policlonal
  • western blot; ratón; 1:5000; fig 3A
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on ratón samples at 1:5000 (fig 3A). Biochimie (2015) ncbi
conejo policlonal
  • western blot; humanos; fig s4
Abcam Mapk1 anticuerpos (Abcam, ab17942) was used in western blot on humanos samples (fig s4). J Cell Sci (2015) ncbi
ratón monoclonal (ERK-7D8)
  • western blot; ratón; 1:2000; fig 1d
Abcam Mapk1 anticuerpos (Abcam, ab54230) was used in western blot on ratón samples at 1:2000 (fig 1d). J Biol Chem (2014) ncbi
ratón monoclonal (MAPK-YT)
  • inmunohistoquímica; rata; 1:200
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in inmunohistoquímica on rata samples at 1:200. J Surg Res (2014) ncbi
conejo policlonal
  • western blot; vacas ; fig 5, 6
Abcam Mapk1 anticuerpos (Abcam, AB17942) was used in western blot on vacas samples (fig 5, 6). Endocrinology (2014) ncbi
ratón monoclonal (MAPK-YT)
  • western blot; humanos; 1:50-500
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in western blot on humanos samples at 1:50-500. Reprod Biol Endocrinol (2013) ncbi
ratón monoclonal (MAPK-YT)
  • inmunohistoquímica; humanos; 1:200
Abcam Mapk1 anticuerpos (Abcam, ab50011) was used in inmunohistoquímica on humanos samples at 1:200. PLoS ONE (2013) ncbi
BioLegend
ratón monoclonal (4B11B69)
  • western blot; ratón; fig 6c
BioLegend Mapk1 anticuerpos (BioLegend, 4B11B69) was used in western blot on ratón samples (fig 6c). J Clin Invest (2018) ncbi
ratón monoclonal (4B11B69)
  • citometría de flujo; ratón; fig 3b
BioLegend Mapk1 anticuerpos (Biolegend, 4B11B69) was used in citometría de flujo on ratón samples (fig 3b). Front Immunol (2017) ncbi
Proteintech Group
conejo policlonal
  • western blot; ratón; 1:3000; fig 8b
  • western blot; humanos; 1:3000; fig 8a
Proteintech Group Mapk1 anticuerpos (Proteintech, 16443-1-AP) was used in western blot on ratón samples at 1:3000 (fig 8b) and in western blot on humanos samples at 1:3000 (fig 8a). J Cell Sci (2019) ncbi
conejo policlonal
  • western blot; humanos; 1:5000; fig 7
Proteintech Group Mapk1 anticuerpos (ProteinTech, 16443-1-AP) was used in western blot on humanos samples at 1:5000 (fig 7). Sci Rep (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 5
Proteintech Group Mapk1 anticuerpos (Proteintech, 16443-1-AP) was used in western blot on humanos samples at 1:1000 (fig 5). Sci Rep (2016) ncbi
GeneTex
conejo policlonal
  • western blot; humanos; fig 1b
GeneTex Mapk1 anticuerpos (GeneTex, GTX17942) was used in western blot on humanos samples (fig 1b). Int J Oncol (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:1000
GeneTex Mapk1 anticuerpos (Genetex, GTX17942) was used in western blot on humanos samples at 1:1000. Biochem Pharmacol (2015) ncbi
R&D Systems
cabra policlonal
  • western blot; ratón
R&D Systems Mapk1 anticuerpos (R&D Systems, AF12301) was used in western blot on ratón samples . In Vitro Cell Dev Biol Anim (2014) ncbi
Abnova
conejo monoclonal (G15-B)
  • western blot; humanos
Abnova Mapk1 anticuerpos (Abnova, G15-B) was used in western blot on humanos samples . J Transl Med (2015) ncbi
MilliporeSigma
conejo policlonal
  • western blot; humanos; tbl 4
MilliporeSigma Mapk1 anticuerpos (Sigma, M0800) was used in western blot on humanos samples (tbl 4). Transl Psychiatry (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 1
  • western blot; ratón; fig 1
MilliporeSigma Mapk1 anticuerpos (Sigma-Aldrich, M0800) was used in western blot on humanos samples (fig 1) and in western blot on ratón samples (fig 1). Cell Div (2016) ncbi
conejo policlonal
  • western blot; humanos; fig 3
  • western blot; ratón; fig 3
MilliporeSigma Mapk1 anticuerpos (Sigma, M0800) was used in western blot on humanos samples (fig 3) and in western blot on ratón samples (fig 3). Oncogenesis (2016) ncbi
conejo policlonal
  • western blot; humanos; 1:2000; fig 1
MilliporeSigma Mapk1 anticuerpos (Sigma-Aldrich, M0800) was used in western blot on humanos samples at 1:2000 (fig 1). Biochem Pharmacol (2016) ncbi
conejo policlonal
  • western blot; rata; 1:10,000; fig s2b
MilliporeSigma Mapk1 anticuerpos (Sigma, M0800) was used in western blot on rata samples at 1:10,000 (fig s2b). Metallomics (2016) ncbi
conejo policlonal
  • western blot; ratón
MilliporeSigma Mapk1 anticuerpos (Sigma, M-0800) was used in western blot on ratón samples . J Lipid Res (2015) ncbi
conejo policlonal
  • western blot; rata; 1:1000
MilliporeSigma Mapk1 anticuerpos (Zymed Laboratories, M0800) was used in western blot on rata samples at 1:1000. Int J Mol Med (2015) ncbi
conejo policlonal
  • inmunohistoquímica; ratón; 1:1000
MilliporeSigma Mapk1 anticuerpos (Sigma, M 0800) was used in inmunohistoquímica on ratón samples at 1:1000. Eur Neuropsychopharmacol (2015) ncbi
conejo policlonal
  • western blot; humanos
MilliporeSigma Mapk1 anticuerpos (Sigma, M0800) was used in western blot on humanos samples . J Biol Chem (2014) ncbi
Cell Signaling Technology
conejo monoclonal (20G11)
  • western blot; humanos; 1:2000; fig s2b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376S) was used in western blot on humanos samples at 1:2000 (fig s2b). Nat Commun (2019) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 7b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 7b). Cell (2019) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 6c
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4376) was used in western blot on humanos samples (fig 6c). elife (2019) ncbi
conejo policlonal
  • western blot; humanos; 1:2000; fig s4c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 9108) was used in western blot on humanos samples at 1:2000 (fig s4c). Nat Commun (2019) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 5d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples (fig 5d). Cell Rep (2018) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; humanos; fig 5a
  • western blot; humanos; fig 6c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in citometría de flujo on humanos samples (fig 5a) and in western blot on humanos samples (fig 6c). J Virol (2019) ncbi
conejo monoclonal (20G11)
  • inmunocitoquímica; humanos; 1:1000; fig s3c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in inmunocitoquímica on humanos samples at 1:1000 (fig s3c). Genes Dev (2018) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; humanos; 1:100; fig s17b
  • immunohistochemistry - paraffin section; ratón; 1:100; fig s5j, s6h, s14f, s15g
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on humanos samples at 1:100 (fig s17b) and in immunohistochemistry - paraffin section on ratón samples at 1:100 (fig s5j, s6h, s14f, s15g). Nat Med (2018) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:2000; fig 2a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in western blot on ratón samples at 1:2000 (fig 2a). J Neurochem (2018) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; ratón; fig 9a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in citometría de flujo on ratón samples (fig 9a). J Exp Med (2018) ncbi
conejo monoclonal (197G2)
  • otro; humanos; fig 4c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in otro on humanos samples (fig 4c). Cancer Cell (2018) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig 8b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:1000 (fig 8b). Br J Pharmacol (2018) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 6e
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling, 4376) was used in western blot on ratón samples at 1:1000 (fig 6e). Nat Commun (2018) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; ratón; fig 1c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in citometría de flujo on ratón samples (fig 1c). J Clin Invest (2018) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 3a). Brain Behav Immun (2018) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 9e
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples (fig 9e). J Clin Invest (2017) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; humanos; 1:200; fig 3d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on humanos samples at 1:200 (fig 3d). BMC Cancer (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3e
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 3e). Proc Natl Acad Sci U S A (2017) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; 1:1000; fig s4h
  • inmunohistoquímica; ratón; 1:400; fig 4f
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples at 1:1000 (fig s4h) and in inmunohistoquímica on ratón samples at 1:400 (fig 4f). Nature (2017) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:3000; fig 3d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples at 1:3000 (fig 3d). Proc Natl Acad Sci U S A (2017) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; 1:1000; fig 4a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples at 1:1000 (fig 4a). Breast Cancer (Dove Med Press) (2017) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 7b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples at 1:1000 (fig 7b). Toxicol Appl Pharmacol (2017) ncbi
conejo policlonal
  • western blot; humanos; fig 6b
Cell Signaling Technology Mapk1 anticuerpos (cell signalling, 9108) was used in western blot on humanos samples (fig 6b). elife (2017) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on ratón samples (fig 3). Front Aging Neurosci (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 4a
  • western blot; ratón; fig 3c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in western blot on humanos samples (fig 4a) and in western blot on ratón samples (fig 3c). Sci Signal (2017) ncbi
conejo monoclonal (197G2)
  • reverse phase protein lysate microarray; humanos; fig st6
Cell Signaling Technology Mapk1 anticuerpos (CST, 4377) was used in reverse phase protein lysate microarray on humanos samples (fig st6). Cancer Cell (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1f
Cell Signaling Technology Mapk1 anticuerpos (cst, 4377S) was used in western blot on humanos samples (fig 1f). J Cell Sci (2017) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 4
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling, 4376) was used in western blot on ratón samples at 1:1000 (fig 4). PLoS ONE (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 5a). Am J Respir Crit Care Med (2017) ncbi
conejo monoclonal (20G11)
  • western blot; rata; 1:5000; fig 1a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on rata samples at 1:5000 (fig 1a). Cell Death Differ (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on humanos samples (fig 3a). PLoS ONE (2017) ncbi
conejo monoclonal (197G2)
  • reverse phase protein lysate microarray; humanos; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in reverse phase protein lysate microarray on humanos samples (fig 3a). Nature (2017) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; humanos; 1:200; fig 7b
  • western blot; humanos; 1:1000; fig 7a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in citometría de flujo on humanos samples at 1:200 (fig 7b) and in western blot on humanos samples at 1:1000 (fig 7a). Nat Commun (2017) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig s5f
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples (fig s5f). Nature (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples . Cell Syst (2017) ncbi
conejo policlonal
  • western blot; humanos; 1:1000; fig 6d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 9108) was used in western blot on humanos samples at 1:1000 (fig 6d). Sci Rep (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig 12
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on ratón samples at 1:1000 (fig 12). J Neurosci Res (2017) ncbi
conejo monoclonal (20G11)
  • inmunohistoquímica; ratón; fig 3e
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in inmunohistoquímica on ratón samples (fig 3e). PLoS ONE (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:1000 (fig 3). Cell Death Dis (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; 1:1000; fig 7
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376S) was used in western blot on humanos samples at 1:1000 (fig 7). Respir Res (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 2d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples (fig 2d). J Exp Med (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 2a
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on humanos samples (fig 2a). Sci Rep (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 6h
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 6h). Nature (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 4a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 4a). Int J Mol Sci (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 7a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376S) was used in western blot on humanos samples (fig 7a). Cell (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:2000; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (cell signalling, 4377) was used in western blot on ratón samples at 1:2000 (fig 5a). Int J Mol Med (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig 3g
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:1000 (fig 3g). Oncogene (2017) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig 3h
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on humanos samples at 1:1000 (fig 3h). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • otro; humanos; 1:50; fig 5e
  • western blot; humanos; 1:1000; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in otro on humanos samples at 1:50 (fig 5e) and in western blot on humanos samples at 1:1000 (fig 5a). BMC Cancer (2016) ncbi
conejo monoclonal (197G2)
  • western blot; rata; 1:1000; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on rata samples at 1:1000 (fig 5a). J Physiol Biochem (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 1b
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4376) was used in western blot on humanos samples (fig 1b). Oncotarget (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 2a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 20G11) was used in western blot on ratón samples (fig 2a). Proc Natl Acad Sci U S A (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig s6c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples at 1:1000 (fig s6c). Nature (2016) ncbi
conejo monoclonal (20G11)
  • inmunohistoquímica; ratón; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in inmunohistoquímica on ratón samples (fig 6). elife (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 20G11) was used in western blot on ratón samples (fig 3a). J Biol Chem (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3e
Cell Signaling Technology Mapk1 anticuerpos (CST, 4377S) was used in western blot on humanos samples (fig 3e). Nature (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:2000; fig S11
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples at 1:2000 (fig S11). Nat Commun (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; 1:1000; fig s4
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376S) was used in western blot on humanos samples at 1:1000 (fig s4). Nat Commun (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 2
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples (fig 2). PLoS ONE (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 3a). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 6). Mol Hum Reprod (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 4a
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on ratón samples (fig 4a). elife (2016) ncbi
conejo policlonal
  • western blot; ratón; fig 4b
  • western blot; humanos; fig 1b
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 9108) was used in western blot on ratón samples (fig 4b) and in western blot on humanos samples (fig 1b). Cell Signal (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 5c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples (fig 5c). Mucosal Immunol (2017) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on ratón samples at 1:1000 (fig 3a). Sci Rep (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 5
Cell Signaling Technology Mapk1 anticuerpos (CST, 4376) was used in western blot on humanos samples (fig 5). Oncogenesis (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on ratón samples at 1:1000. Nat Commun (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig s6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 20G11) was used in western blot on ratón samples at 1:1000 (fig s6). Nat Commun (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:500; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on ratón samples at 1:500 (fig 6). Cell Death Differ (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig s2
Cell Signaling Technology Mapk1 anticuerpos (Cell Signal, 4377S) was used in western blot on ratón samples at 1:1000 (fig s2). Proc Natl Acad Sci U S A (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 5
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 20G11) was used in western blot on humanos samples (fig 5). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Tech, 4377S) was used in western blot on humanos samples (fig 3). Sci Signal (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig s5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples (fig s5). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig 5e
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:1000 (fig 5e). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples . Sci Rep (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 5s3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples at 1:1000 (fig 5s3). elife (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 1). PLoS ONE (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 3d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377S) was used in western blot on humanos samples (fig 3d). J Exp Med (2016) ncbi
conejo monoclonal (197G2)
  • western blot; scFv; 1:1000; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (cell signalling, 4377) was used in western blot on scFv samples at 1:1000 (fig 5a). Mol Med Rep (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:500; fig 1b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling, 4377) was used in western blot on humanos samples at 1:500 (fig 1b). Nat Commun (2016) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples (fig 1). Proc Natl Acad Sci U S A (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on humanos samples (fig 5). Target Oncol (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig s7
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:1000 (fig s7). Brain Behav (2015) ncbi
conejo monoclonal (197G2)
  • immunohistochemistry - paraffin section; ratón; 1:50; fig 6b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, cs4377s) was used in immunohistochemistry - paraffin section on ratón samples at 1:50 (fig 6b). Development (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples (fig 1). Oncogene (2016) ncbi
conejo policlonal
  • immunohistochemistry knockout validation; ratón; fig 3
  • western blot knockout validation; ratón; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 9108) was used in immunohistochemistry knockout validation on ratón samples (fig 3) and in western blot knockout validation on ratón samples (fig 3). Sci Rep (2015) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; humanos; fig 2
  • western blot; humanos; fig 2
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in citometría de flujo on humanos samples (fig 2) and in western blot on humanos samples (fig 2). Oncogene (2016) ncbi
conejo monoclonal (197G2)
  • western blot; rata; 1:1000; fig 5a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on rata samples at 1:1000 (fig 5a). Int J Mol Med (2016) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples (fig 3). elife (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig 3a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:1000 (fig 3a). Oncotarget (2016) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 1a). Oncotarget (2015) ncbi
conejo monoclonal (197G2)
  • western blot; rata; 1:1000; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Tech, 4377) was used in western blot on rata samples at 1:1000 (fig 3). Nat Neurosci (2015) ncbi
conejo monoclonal (20G11)
  • western blot; rata; 1:1000; fig 8
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on rata samples at 1:1000 (fig 8). Sci Rep (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 5c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples (fig 5c). Sci Signal (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; 1:150; fig s3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in immunohistochemistry - paraffin section on ratón samples at 1:150 (fig s3). Mol Cancer (2015) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples (fig 6). Oncotarget (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig s5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 20G11) was used in western blot on ratón samples (fig s5). Nature (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376S) was used in western blot on ratón samples (fig 3). Nat Struct Mol Biol (2015) ncbi
conejo monoclonal (20G11)
  • western blot; rata; fig 5
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4376S) was used in western blot on rata samples (fig 5). J Korean Med Sci (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig 2,3,4,5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376s) was used in western blot on ratón samples (fig 2,3,4,5). Cell Res (2015) ncbi
conejo monoclonal (197G2)
  • immunohistochemistry - paraffin section; humanos; 1:200; fig 6a, 6b
  • western blot; humanos; fig 3a, 4a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in immunohistochemistry - paraffin section on humanos samples at 1:200 (fig 6a, 6b) and in western blot on humanos samples (fig 3a, 4a). Oncotarget (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; 1:500
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on ratón samples at 1:500. Dev Biol (2016) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 4d
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples (fig 4d). Oncotarget (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig s1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig s1). Mol Cancer Res (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; fig 2
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in immunohistochemistry - paraffin section on ratón samples (fig 2). elife (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 7
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on humanos samples (fig 7). Oncotarget (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ovejas; 1:2500
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ovejas samples at 1:2500. Mol Cell Endocrinol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on ratón samples (fig 1). J Immunol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies, 4377) was used in western blot on humanos samples . PLoS Pathog (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; fig 5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on ratón samples (fig 5). Oncogene (2016) ncbi
conejo monoclonal (20G11)
  • western blot; rata; 1:1000; fig 4
Cell Signaling Technology Mapk1 anticuerpos (cell signalling, 4376) was used in western blot on rata samples at 1:1000 (fig 4). Toxicology (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 197G2) was used in western blot on ratón samples (fig 6). Mol Biol Cell (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; perro
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 20G11) was used in immunohistochemistry - paraffin section on perro samples . Int J Oncol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples . Mol Cancer Ther (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on ratón samples (fig 1). FASEB J (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000; fig s3c
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies,, 4377) was used in western blot on humanos samples at 1:1000 (fig s3c). Nat Commun (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1500; fig st8
Cell Signaling Technology Mapk1 anticuerpos (CST, 197G2) was used in western blot on humanos samples at 1:1500 (fig st8). Gastroenterology (2015) ncbi
conejo monoclonal (20G11)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (CST, 20G11) was used in western blot on humanos samples . Acta Neuropathol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:500; fig 4
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:500 (fig 4). J Physiol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:500; tbl 3
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:500 (tbl 3). PLoS ONE (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; fig s7a
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4376) was used in western blot on ratón samples (fig s7a). Nat Immunol (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling Technology, 4376) was used in immunohistochemistry - paraffin section on humanos samples . Cancer Genet (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in western blot on humanos samples . PLoS ONE (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:2000; fig 5
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples at 1:2000 (fig 5). PLoS ONE (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 197G2) was used in western blot on humanos samples . J Cell Mol Med (2015) ncbi
conejo policlonal
  • western blot; rata; fig 7
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 9108) was used in western blot on rata samples (fig 7). Int J Mol Med (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1a
  • western blot; ratón; fig 1a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on humanos samples (fig 1a) and in western blot on ratón samples (fig 1a). Mol Carcinog (2016) ncbi
conejo policlonal
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 9108) was used in western blot on humanos samples . Cell Signal (2015) ncbi
conejo monoclonal (20G11)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on humanos samples . Cell Signal (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 2
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 197G2) was used in western blot on humanos samples (fig 2). Oncotarget (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples at 1:1000. PLoS ONE (2015) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:1000; fig 7
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on ratón samples at 1:1000 (fig 7). Mol Cell Biol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000; fig s6
Cell Signaling Technology Mapk1 anticuerpos (Cell signaling, 4377) was used in western blot on ratón samples at 1:1000 (fig s6). Development (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 8
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on ratón samples (fig 8). Mol Cell Biol (2015) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on humanos samples at 1:1000. Am J Physiol Renal Physiol (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; 1:25
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on ratón samples at 1:25. PLoS Genet (2014) ncbi
conejo monoclonal (20G11)
  • inmunohistoquímica; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 20G11) was used in inmunohistoquímica on humanos samples . Cancer Cell (2015) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig 8a
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377S) was used in western blot on ratón samples (fig 8a). Free Radic Biol Med (2015) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; fig s4
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on ratón samples (fig s4). Nat Commun (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples . J Mol Endocrinol (2014) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on humanos samples (fig 6). Oncotarget (2014) ncbi
conejo monoclonal (20G11)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 20G11) was used in western blot on ratón samples . PLoS ONE (2014) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376S) was used in immunohistochemistry - paraffin section on ratón samples and in western blot on ratón samples . Neoplasia (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000
  • western blot; humanos; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:1000 and in western blot on humanos samples at 1:1000. Int Immunopharmacol (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 6
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples (fig 6). PLoS ONE (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; fig 1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling Technology, 4377S) was used in western blot on humanos samples (fig 1). Cell Prolif (2014) ncbi
conejo monoclonal (197G2)
  • western blot; Sus; 1:500
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on Sus samples at 1:500. Amino Acids (2014) ncbi
conejo monoclonal (20G11)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on ratón samples . Arthritis Rheumatol (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples . Eur J Cancer (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:500
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:500. Free Radic Biol Med (2014) ncbi
conejo monoclonal (20G11)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling technology, 4376) was used in western blot on humanos samples . PLoS ONE (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; fig s1
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in western blot on ratón samples (fig s1). Nat Immunol (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples . Cell Death Differ (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on ratón samples . PLoS ONE (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples . J Immunol (2014) ncbi
conejo monoclonal (197G2)
  • western blot; rata
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377S) was used in western blot on rata samples . Brain Res (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:2500
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:2500. Brain Behav (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples . Breast Cancer Res (2014) ncbi
conejo monoclonal (20G11)
  • western blot; humanos; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on humanos samples at 1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - frozen section; rata; 1:200
  • western blot; rata; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in immunohistochemistry - frozen section on rata samples at 1:200 and in western blot on rata samples at 1:1000. BMC Complement Altern Med (2014) ncbi
conejo monoclonal (197G2)
  • citometría de flujo; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 197G2) was used in citometría de flujo on ratón samples . PLoS ONE (2014) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; ratón; 1:75; fig 2
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in immunohistochemistry - paraffin section on ratón samples at 1:75 (fig 2). Genes Dev (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377S) was used in western blot on humanos samples . Neuro Oncol (2014) ncbi
conejo monoclonal (197G2)
  • immunohistochemistry - paraffin section; ratón
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in immunohistochemistry - paraffin section on ratón samples and in western blot on ratón samples . J Biol Chem (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies, 4377) was used in western blot on ratón samples . Am J Respir Cell Mol Biol (2014) ncbi
conejo monoclonal (20G11)
  • inmunohistoquímica; Sus; 1:50
Cell Signaling Technology Mapk1 anticuerpos (Cell Signalling, 4376) was used in inmunohistoquímica on Sus samples at 1:50. Dev Biol (2014) ncbi
conejo monoclonal (20G11)
  • inmunohistoquímica; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in inmunohistoquímica on humanos samples . Mol Cancer Ther (2014) ncbi
conejo monoclonal (197G2)
  • western blot; ratón; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples at 1:1000. Nat Med (2013) ncbi
conejo monoclonal (197G2)
  • western blot; ratón
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on ratón samples . PLoS ONE (2013) ncbi
conejo monoclonal (197G2)
  • immunohistochemistry - paraffin section; humanos; 1:100
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies, 4377) was used in immunohistochemistry - paraffin section on humanos samples at 1:100 and in western blot on humanos samples . PLoS ONE (2013) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; humanos; 1:400
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies, 4376) was used in immunohistochemistry - paraffin section on humanos samples at 1:400 and in western blot on humanos samples . PLoS ONE (2013) ncbi
conejo monoclonal (20G11)
  • western blot; ratón; 1:200
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot on ratón samples at 1:200. Nat Med (2013) ncbi
conejo monoclonal (20G11)
  • immunohistochemistry - paraffin section; humanos; 1:100
  • western blot; humanos; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologies, 4376) was used in immunohistochemistry - paraffin section on humanos samples at 1:100 and in western blot on humanos samples at 1:1000. Oncotarget (2013) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technologie, 4377) was used in western blot on humanos samples . Oncogenesis (2013) ncbi
conejo monoclonal (197G2)
  • western blot; humanos; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4377) was used in western blot on humanos samples at 1:1000. Head Neck (2014) ncbi
conejo monoclonal (197G2)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in western blot on humanos samples . Cancer Cell Int (2013) ncbi
conejo monoclonal (197G2)
  • inmunohistoquímica; ratón
  • western blot; ratón; fig 2b
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in inmunohistoquímica on ratón samples and in western blot on ratón samples (fig 2b). FASEB J (2013) ncbi
conejo monoclonal (197G2)
  • inmunocitoquímica; ratón; fig 4
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4377) was used in inmunocitoquímica on ratón samples (fig 4). Stem Cells (2012) ncbi
conejo monoclonal (20G11)
  • western blot; humanos
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling, 4376) was used in western blot on humanos samples . J Appl Physiol (1985) (2012) ncbi
conejo monoclonal (20G11)
  • western blot knockout validation; ratón; 1:1000
Cell Signaling Technology Mapk1 anticuerpos (Cell Signaling Technology, 4376) was used in western blot knockout validation on ratón samples at 1:1000. Development (2007) ncbi
EMD Millipore
conejo recombinant (AW39R)
  • western blot; rata; 1:1000; fig 5b
EMD Millipore Mapk1 anticuerpos (Millipore, 05-797R) was used in western blot on rata samples at 1:1000 (fig 5b). Vascul Pharmacol (2017) ncbi
ratón monoclonal (1B3B9)
  • western blot; humanos; fig 5b,5c,6b,6c,6d
EMD Millipore Mapk1 anticuerpos (Millipore, 05-157) was used in western blot on humanos samples (fig 5b,5c,6b,6c,6d). Oncotarget (2016) ncbi
conejo recombinant (AW39R)
  • western blot; humanos
EMD Millipore Mapk1 anticuerpos (Millipore, 05-797R) was used in western blot on humanos samples . Mol Cancer Ther (2016) ncbi
conejo recombinant (AW39R)
  • western blot; ratón; fig 1b
  • western blot; humanos; fig 1a
EMD Millipore Mapk1 anticuerpos (Millipore, 05-797R) was used in western blot on ratón samples (fig 1b) and in western blot on humanos samples (fig 1a). J Neuroinflammation (2016) ncbi
ratón monoclonal (1B3B9)
  • western blot; humanos; 1:250; fig 2
EMD Millipore Mapk1 anticuerpos (Millipore, 05-157) was used in western blot on humanos samples at 1:250 (fig 2). elife (2016) ncbi
ratón monoclonal (1B3B9)
  • western blot; humanos; fig s4d
EMD Millipore Mapk1 anticuerpos (Millipore, 05-157) was used in western blot on humanos samples (fig s4d). Oncotarget (2015) ncbi
conejo recombinant (AW39R)
  • western blot; rata; 1:1000; fig 2e
EMD Millipore Mapk1 anticuerpos (Millipore, 05-797R) was used in western blot on rata samples at 1:1000 (fig 2e). Front Behav Neurosci (2015) ncbi
ratón monoclonal (1B3B9)
  • western blot; ratón; fig 1
EMD Millipore Mapk1 anticuerpos (Millipore, 05-157) was used in western blot on ratón samples (fig 1). Nature (2015) ncbi
conejo recombinant (AW39R)
  • western blot; humanos
EMD Millipore Mapk1 anticuerpos (EMDMillipore, 05-797R) was used in western blot on humanos samples . Mol Cancer Ther (2015) ncbi
conejo recombinant (AW39R)
  • inmunocitoquímica; ratón
EMD Millipore Mapk1 anticuerpos (Millipore, 05-797R) was used in inmunocitoquímica on ratón samples . Glia (2015) ncbi
conejo monoclonal
  • western blot; ratón; 1:1000; fig 6
EMD Millipore Mapk1 anticuerpos (Millipore, 05-957) was used in western blot on ratón samples at 1:1000 (fig 6). PLoS ONE (2012) ncbi
BD Biosciences
ratón monoclonal (33/ERK2)
  • western blot; humanos; fig s6
BD Biosciences Mapk1 anticuerpos (BD Biosciences, 610103) was used in western blot on humanos samples (fig s6). Sci Rep (2016) ncbi
ratón monoclonal (33/ERK2)
  • western blot; humanos
BD Biosciences Mapk1 anticuerpos (BD Biosciences, 610104) was used in western blot on humanos samples . Biochem Biophys Res Commun (2014) ncbi
artículos revisados
  1. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed publisher
  2. Jia Y, Li H, Wang J, Wang Y, Zhang P, Ma N, et al. Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis. 2019;8:31 pubmed publisher
  3. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed publisher
  4. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed publisher
  5. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed publisher
  6. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed publisher
  7. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed publisher
  8. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed publisher
  9. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed publisher
  10. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed publisher
  11. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed publisher
  12. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed publisher
  13. Xu P, Chen A, Ganaie S, Cheng F, Shen W, Wang X, et al. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol. 2019;93: pubmed publisher
  14. McCloskey A, Ibarra A, Hetzer M. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 2018;32:1321-1331 pubmed publisher
  15. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed publisher
  16. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed publisher
  17. Weiss J, Davies L, Karwan M, Ileva L, Ozaki M, Cheng R, et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Invest. 2018;128:3794-3805 pubmed publisher
  18. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed publisher
  19. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed publisher
  20. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed publisher
  21. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed publisher
  22. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed publisher
  23. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed publisher
  24. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed publisher
  25. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed publisher
  26. Durai V, Bagadia P, Briseño C, Theisen D, Iwata A, Davidson J, et al. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med. 2018;215:1417-1435 pubmed publisher
  27. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed publisher
  28. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed publisher
  29. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed publisher
  30. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed publisher
  31. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed publisher
  32. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed publisher
  33. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed publisher
  34. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed publisher
  35. Balan I, Warnock K, Puche A, GONDRE LEWIS M, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun. 2018;69:139-153 pubmed publisher
  36. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed publisher
  37. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed publisher
  38. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed publisher
  39. Quadri H, Aiken T, Allgaeuer M, Moravec R, Altekruse S, Hussain S, et al. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer. 2017;17:495 pubmed publisher
  40. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed publisher
  41. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed publisher
  42. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed publisher
  43. Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed publisher
  44. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed publisher
  45. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed publisher
  46. Chen M, Dai L, Fei A, Pan S, Wang H. Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med. 2017;13:1353-1359 pubmed publisher
  47. He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med. 2017;13:1203-1208 pubmed publisher
  48. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed publisher
  49. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed publisher
  50. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed publisher
  51. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed publisher
  52. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed publisher
  53. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed publisher
  54. Fischer A, Harrison K, Ramirez Y, Auer D, Chowdhury S, Prusty B, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. elife. 2017;6: pubmed publisher
  55. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed publisher
  56. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed publisher
  57. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed publisher
  58. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed publisher
  59. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed publisher
  60. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed publisher
  61. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed publisher
  62. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed publisher
  63. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed publisher
  64. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed publisher
  65. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed publisher
  66. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed publisher
  67. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed publisher
  68. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed publisher
  69. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed publisher
  70. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed publisher
  71. Lisse T, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130:975-988 pubmed publisher
  72. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed publisher
  73. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed publisher
  74. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed publisher
  75. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed publisher
  76. Asensio Juan E, Fueyo R, PAPPA S, Iacobucci S, Badosa C, Lois S, et al. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res. 2017;45:3800-3811 pubmed publisher
  77. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed publisher
  78. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed publisher
  79. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed publisher
  80. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed publisher
  81. Takahashi M, Li Y, Dillon T, Stork P. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem. 2017;292:1449-1461 pubmed publisher
  82. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed publisher
  83. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630 pubmed publisher
  84. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed publisher
  85. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed publisher
  86. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed publisher
  87. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed publisher
  88. Ferland D, Darios E, Neubig R, Sjögren B, Truong N, Torres R, et al. Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul Pharmacol. 2017;88:30-41 pubmed publisher
  89. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed publisher
  90. Wang Y, Chiang H, Huang Y, Hsu C, Yang P, Juan H, et al. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016;7:e2458 pubmed publisher
  91. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  92. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed publisher
  93. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  94. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed publisher
  95. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed publisher
  96. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  97. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed publisher
  98. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed publisher
  99. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed publisher
  100. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  101. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  102. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  103. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed publisher
  104. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed publisher
  105. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed publisher
  106. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  107. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed publisher
  108. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed publisher
  109. Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, et al. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med. 2016;38:1411-1418 pubmed publisher
  110. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  111. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed publisher
  112. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  113. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed publisher
  114. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed publisher
  115. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed publisher
  116. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  117. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed publisher
  118. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed publisher
  119. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed publisher
  120. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed publisher
  121. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed publisher
  122. Pomares H, Palmeri C, Iglesias Serret D, Moncunill Massaguer C, Saura Esteller J, Núñez Vázquez S, et al. Targeting prohibitins induces apoptosis in acute myeloid leukemia cells. Oncotarget. 2016;7:64987-65000 pubmed publisher
  123. Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem. 2016;72:763-779 pubmed
  124. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  125. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed publisher
  126. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed publisher
  127. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed publisher
  128. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed publisher
  129. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed publisher
  130. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed publisher
  131. Wu X, Liu W, Duan Z, Gao Y, Li S, Wang K, et al. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Sci Rep. 2016;6:30563 pubmed publisher
  132. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  133. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed publisher
  134. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  135. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed publisher
  136. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed publisher
  137. Fresco V, Kern C, Mohammadi M, Twal W. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL. J Biol Chem. 2016;291:18730-9 pubmed publisher
  138. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed publisher
  139. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed publisher
  140. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed publisher
  141. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  142. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed publisher
  143. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed publisher
  144. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed publisher
  145. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed publisher
  146. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed publisher
  147. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed publisher
  148. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed publisher
  149. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed publisher
  150. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed publisher
  151. Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS ONE. 2016;11:e0156303 pubmed publisher
  152. Blee A, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget. 2016;7:38319-38332 pubmed publisher
  153. Hanson R, Brown R, Steele M, Grandgenett P, Grunkemeyer J, Hollingsworth M. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget. 2016;7:39996-40011 pubmed publisher
  154. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed publisher
  155. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed publisher
  156. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed publisher
  157. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed publisher
  158. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed publisher
  159. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed publisher
  160. Willmer T, Hare S, Peres J, Prince S. The T-box transcription factor TBX3 drives proliferation by direct repression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cell Div. 2016;11:6 pubmed publisher
  161. Dong F, Ling Q, Ye D, Zhang Z, Shu J, Chen G, et al. TCF7L2 involvement in estradiol- and progesterone-modulated islet and hepatic glucose homeostasis. Sci Rep. 2016;6:24859 pubmed publisher
  162. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed publisher
  163. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed publisher
  164. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  165. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed publisher
  166. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed publisher
  167. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed publisher
  168. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed publisher
  169. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  170. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed publisher
  171. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed publisher
  172. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed publisher
  173. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed publisher
  174. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed publisher
  175. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed publisher
  176. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed publisher
  177. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed publisher
  178. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed publisher
  179. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed publisher
  180. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed publisher
  181. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed publisher
  182. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed publisher
  183. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed publisher
  184. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed publisher
  185. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed publisher
  186. Willmer T, Cooper A, Sims D, Govender D, Prince S. The T-box transcription factor 3 is a promising biomarker and a key regulator of the oncogenic phenotype of a diverse range of sarcoma subtypes. Oncogenesis. 2016;5:e199 pubmed publisher
  187. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  188. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed publisher
  189. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed publisher
  190. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther. 2016;15:911-21 pubmed publisher
  191. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed publisher
  192. Ebbing E, Medema J, Damhofer H, Meijer S, Krishnadath K, van Berge Henegouwen M, et al. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget. 2016;7:10243-54 pubmed publisher
  193. Li S, Lu L, Liao X, Gao T, Wang F, Zhang L, et al. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals. 2016;29:265-74 pubmed publisher
  194. O Sullivan C, Schubart A, Mir A, Dev K. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31 pubmed publisher
  195. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed publisher
  196. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed publisher
  197. Martin B, Chadwick W, Janssens J, Premont R, Schmalzigaug R, Becker K, et al. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne). 2015;6:191 pubmed publisher
  198. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed publisher
  199. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed publisher
  200. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed publisher
  201. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed publisher
  202. Hattermann K, Gebhardt H, Krossa S, Ludwig A, Lucius R, Held Feindt J, et al. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. elife. 2016;5:e10820 pubmed publisher
  203. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed publisher
  204. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed publisher
  205. Chan A, Punwani D, Kadlecek T, Cowan M, Olson J, Mathes E, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155-65 pubmed publisher
  206. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed publisher
  207. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed publisher
  208. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed publisher
  209. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed publisher
  210. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed publisher
  211. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed publisher
  212. Matalkah F, Martin E, Zhao H, Agazie Y. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 2016;18:2 pubmed publisher
  213. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed publisher
  214. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed publisher
  215. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed publisher
  216. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed publisher
  217. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed publisher
  218. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed publisher
  219. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed publisher
  220. Huguet F, Fernet M, Giocanti N, Favaudon V, Larsen A. Afatinib, an Irreversible EGFR Family Inhibitor, Shows Activity Toward Pancreatic Cancer Cells, Alone and in Combination with Radiotherapy, Independent of KRAS Status. Target Oncol. 2016;11:371-81 pubmed publisher
  221. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed publisher
  222. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed publisher
  223. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed publisher
  224. Duchnowska R, Wysocki P, Korski K, Czartoryska Arłukowicz B, Niwińska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed publisher
  225. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed publisher
  226. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed publisher
  227. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed publisher
  228. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed publisher
  229. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed publisher
  230. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed publisher
  231. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed publisher
  232. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed publisher
  233. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed publisher
  234. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed publisher
  235. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed publisher
  236. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed publisher
  237. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed publisher
  238. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed publisher
  239. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed publisher
  240. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed publisher
  241. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed publisher
  242. Moncunill Massaguer C, Saura Esteller J, Pérez Perarnau A, Palmeri C, Núñez Vázquez S, Cosialls A, et al. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget. 2015;6:41750-65 pubmed publisher
  243. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed publisher
  244. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed publisher
  245. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed publisher
  246. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed publisher
  247. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed publisher
  248. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed publisher
  249. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed publisher
  250. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed publisher
  251. Gu Y, Li H, Zhao L, Zhao S, He W, Rui L, et al. GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS axis in hepatocellular carcinoma. Oncotarget. 2015;6:33658-74 pubmed publisher
  252. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed publisher
  253. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed publisher
  254. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed publisher
  255. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed publisher
  256. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed publisher
  257. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed publisher
  258. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed publisher
  259. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed publisher
  260. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed publisher
  261. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed publisher
  262. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed publisher
  263. Liu J, Zhang X, Zhang W, Gu G, Wang P. Effects of Sevoflurane on Young Male Adult C57BL/6 Mice Spatial Cognition. PLoS ONE. 2015;10:e0134217 pubmed publisher
  264. Park E, Kim N, Ficarro S, Zhang Y, Lee B, Cho A, et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703-711 pubmed publisher
  265. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed publisher
  266. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed publisher
  267. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed publisher
  268. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed publisher
  269. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed publisher
  270. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed publisher
  271. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed publisher
  272. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  273. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed publisher
  274. Chen K, Tsai M, Wu C, Jou M, Wei I, Huang C. AMPA Receptor-mTOR Activation is Required for the Antidepressant-Like Effects of Sarcosine during the Forced Swim Test in Rats: Insertion of AMPA Receptor may Play a Role. Front Behav Neurosci. 2015;9:162 pubmed publisher
  275. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed publisher
  276. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed publisher
  277. Ogiso H, Taniguchi M, Okazaki T. Analysis of lipid-composition changes in plasma membrane microdomains. J Lipid Res. 2015;56:1594-605 pubmed publisher
  278. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed publisher
  279. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed publisher
  280. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed publisher
  281. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed publisher
  282. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  283. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed publisher
  284. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed publisher
  285. Hensel J, Duex J, Owens C, Dancik G, Edwards M, Frierson H, et al. Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res. 2015;13:1306-15 pubmed publisher
  286. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed publisher
  287. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed publisher
  288. Wightman S, Uppal A, Pitroda S, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327-35 pubmed publisher
  289. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  290. Boeldt D, Grummer M, YI F, Magness R, Bird I. Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol. 2015;412:73-84 pubmed publisher
  291. Tampella G, Kerns H, Niu D, Singh S, Khim S, Bosch K, et al. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages. J Immunol. 2015;195:246-56 pubmed publisher
  292. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  293. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed publisher
  294. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed publisher
  295. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed publisher
  296. Alexandrova E, Yallowitz A, Li D, Xu S, Schulz R, Proia D, et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 2015;523:352-6 pubmed publisher
  297. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed publisher
  298. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed publisher
  299. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed publisher
  300. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed publisher
  301. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed publisher
  302. Ji X, Li Z, Chen H, Li J, Tian H, Li Z, et al. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology. 2015;334:22-32 pubmed publisher
  303. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed publisher
  304. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed publisher
  305. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed publisher
  306. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed publisher
  307. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed publisher
  308. Waters A, Stewart J, Atigadda V, Mroczek Musulman E, Muccio D, Grubbs C, et al. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther. 2015;14:1559-69 pubmed publisher
  309. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  310. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed publisher
  311. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed publisher
  312. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed publisher
  313. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed publisher
  314. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed publisher
  315. Chan S, Selth L, Li Y, Nyquist M, Miao L, Bradner J, et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 2015;43:5880-97 pubmed publisher
  316. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed publisher
  317. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed publisher
  318. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed publisher
  319. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed publisher
  320. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed publisher
  321. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed publisher
  322. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed publisher
  323. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed publisher
  324. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed publisher
  325. Moretti M, Budni J, Freitas A, Neis V, Ribeiro C, de Oliveira Balen G, et al. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25:902-12 pubmed publisher
  326. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed publisher
  327. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed publisher
  328. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed publisher
  329. Kumar A, Pathak P, Purkait S, Faruq M, Jha P, Mallick S, et al. Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet. 2015;208:91-5 pubmed publisher
  330. Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS ONE. 2015;10:e0119898 pubmed publisher
  331. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed publisher
  332. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed publisher
  333. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  334. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed publisher
  335. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed publisher
  336. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed publisher
  337. Guo H, Liu B, Hou L, The E, Li G, Wang D, et al. The role of mAKAPβ in the process of cardiomyocyte hypertrophy induced by angiotensin II. Int J Mol Med. 2015;35:1159-68 pubmed publisher
  338. Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog. 2016;55:525-36 pubmed publisher
  339. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed publisher
  340. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed publisher
  341. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed publisher
  342. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed publisher
  343. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  344. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed publisher
  345. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed publisher
  346. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed publisher
  347. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed publisher
  348. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed publisher
  349. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed publisher
  350. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed publisher
  351. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed publisher
  352. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed publisher
  353. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed publisher
  354. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed publisher
  355. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed publisher
  356. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  357. Gao B, Huang Q, Jie Q, Wang L, Zhang H, Liu J, et al. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie. 2015;110:36-44 pubmed publisher
  358. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed publisher
  359. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed publisher
  360. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed publisher
  361. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed publisher
  362. Salotti J, Sakchaisri K, Tourtellotte W, Johnson P. An Arf-Egr-C/EBPβ pathway linked to ras-induced senescence and cancer. Mol Cell Biol. 2015;35:866-83 pubmed publisher
  363. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed publisher
  364. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed publisher
  365. Narumi K, Hirose T, Sato E, Mori T, Kisu K, Ishikawa M, et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am J Physiol Renal Physiol. 2015;308:F487-99 pubmed publisher
  366. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed publisher
  367. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed publisher
  368. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed publisher
  369. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed publisher
  370. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed publisher
  371. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed publisher
  372. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed publisher
  373. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed publisher
  374. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  375. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed publisher
  376. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed publisher
  377. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed publisher
  378. Li J, Ballim D, Rodriguez M, Cui R, Goding C, Teng H, et al. The anti-proliferative function of the TGF-β1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. J Biol Chem. 2014;289:35633-43 pubmed publisher
  379. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed publisher
  380. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  381. Rutkowska A, Preuss I, Gessier F, Sailer A, Dev K. EBI2 regulates intracellular signaling and migration in human astrocyte. Glia. 2015;63:341-51 pubmed publisher
  382. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed publisher
  383. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed publisher
  384. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed publisher
  385. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed publisher
  386. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed publisher
  387. Zhu X, Zhao L, Park J, Willingham M, Cheng S. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia. 2014;16:757-69 pubmed publisher
  388. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed publisher
  389. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed publisher
  390. Candelaria N, Addanki S, Zheng J, Nguyen Vu T, Karaboga H, Dey P, et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE. 2014;9:e106289 pubmed publisher
  391. Gruol D, Vo K, Bray J. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins. Front Cell Neurosci. 2014;8:234 pubmed publisher
  392. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed publisher
  393. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed publisher
  394. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed publisher
  395. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed publisher
  396. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed publisher
  397. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed publisher
  398. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed publisher
  399. Wu T, Ye Y, Min S, Zhu J, Khobahy E, Zhou J, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66:3129-39 pubmed publisher
  400. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed publisher
  401. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed publisher
  402. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed publisher
  403. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed publisher
  404. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed publisher
  405. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed publisher
  406. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed publisher
  407. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed publisher
  408. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed publisher
  409. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed publisher
  410. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed publisher
  411. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed publisher
  412. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed publisher
  413. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed publisher
  414. Gruol D, Vo K, Bray J, Roberts A. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model. Front Integr Neurosci. 2014;8:29 pubmed publisher
  415. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed publisher
  416. Tamaki S, Tokumoto Y. Overexpression of cyclin dependent kinase inhibitor P27/Kip1 increases oligodendrocyte differentiation from induced pluripotent stem cells. In Vitro Cell Dev Biol Anim. 2014;50:778-85 pubmed publisher
  417. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed publisher
  418. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed publisher
  419. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed publisher
  420. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed publisher
  421. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed publisher
  422. Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav. 2014;4:51-9 pubmed publisher
  423. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed publisher
  424. Tsai Y, Wang C, Leung P, Lin K, Chio C, Hu C, et al. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res. 2014;189:106-16 pubmed publisher
  425. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed publisher
  426. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed publisher
  427. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed publisher
  428. Linke R, Pries R, Könnecke M, Bruchhage K, Böscke R, Gebhard M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2014;62:217-29 pubmed publisher
  429. Bokobza S, Jiang Y, Weber A, Devery A, Ryan A. Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:947-54 pubmed publisher
  430. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed publisher
  431. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed publisher
  432. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed publisher
  433. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed publisher
  434. Okada N, Lin C, Ribeiro M, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438-50 pubmed publisher
  435. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed publisher
  436. Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol. 2014;16:1078-85 pubmed publisher
  437. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed publisher
  438. Bloch O, Amit Vazina M, Yona E, Molad Y, Rapoport M. Increased ERK and JNK activation and decreased ERK/JNK ratio are associated with long-term organ damage in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2014;53:1034-42 pubmed
  439. Lee M, Smith S, Murray S, Pham L, Minoo P, Nielsen H. Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol. 2014;51:114-24 pubmed publisher
  440. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed publisher
  441. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed publisher
  442. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed publisher
  443. Valdez Magaña G, Rodriguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol. 2014;387:15-27 pubmed publisher
  444. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed publisher
  445. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed publisher
  446. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed publisher
  447. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed publisher
  448. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed publisher
  449. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed publisher
  450. Lu J, Chang Y, Wang C, Lin Y, Lin C, Wu Z. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor ?-induced lipolysis in 3T3-L1 adipocytes. PLoS ONE. 2013;8:e71517 pubmed publisher
  451. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed publisher
  452. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed publisher
  453. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed publisher
  454. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed publisher
  455. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  456. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed publisher
  457. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed publisher
  458. Wickert L, Blanchette J, Waldschmidt N, Bertics P, Denu J, Denlinger L, et al. The C-terminus of human nucleotide receptor P2X7 is critical for receptor oligomerization and N-linked glycosylation. PLoS ONE. 2013;8:e63789 pubmed publisher
  459. Ahnstedt H, Cao L, Krause D, Warfvinge K, Saveland H, Nilsson O, et al. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries. PLoS ONE. 2013;8:e62698 pubmed publisher
  460. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed publisher
  461. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed publisher
  462. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed publisher
  463. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed publisher
  464. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed publisher
  465. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed publisher
  466. Jarosz M, Robbez Masson L, Chioni A, Cross B, Rosewell I, Grose R. Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. PLoS ONE. 2012;7:e39436 pubmed publisher
  467. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed publisher
  468. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed publisher
  469. Yoo S, Starnes T, Deng Q, Huttenlocher A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature. 2011;480:109-12 pubmed publisher
  470. Gruol D, Puro A, Hao C, Blakely P, Janneke E, Vo K. Neuroadaptive changes in cerebellar neurons induced by chronic exposure to IL-6. J Neuroimmunol. 2011;239:28-36 pubmed publisher
  471. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed publisher
  472. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  473. Witte K, Schuh A, Hegermann J, Sarkeshik A, Mayers J, Schwarze K, et al. TFG-1 function in protein secretion and oncogenesis. Nat Cell Biol. 2011;13:550-8 pubmed publisher
  474. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed publisher
  475. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed publisher
  476. Grassian A, Schafer Z, Brugge J. ErbB2 stabilizes epidermal growth factor receptor (EGFR) expression via Erk and Sprouty2 in extracellular matrix-detached cells. J Biol Chem. 2011;286:79-90 pubmed publisher
  477. Brusevold I, Husvik C, Schreurs O, Schenck K, Bryne M, Søland T. Induction of invasion in an organotypic oral cancer model by CoCl2, a hypoxia mimetic. Eur J Oral Sci. 2010;118:168-76 pubmed publisher
  478. Yang L, Zhang Q, Zhou C, Yang F, Zhang Y, Wang R, et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE. 2010;5:e9851 pubmed publisher
  479. Lu Z, Cox Hipkin M, Windsor W, Boyapati A. 3-phosphoinositide-dependent protein kinase-1 regulates proliferation and survival of cancer cells with an activated mitogen-activated protein kinase pathway. Mol Cancer Res. 2010;8:421-32 pubmed publisher
  480. Cerezo A, Guadamillas M, Goetz J, Sánchez Perales S, Klein E, Assoian R, et al. The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol. 2009;29:5046-59 pubmed publisher
  481. Molad Y, Amit Vasina M, Bloch O, Yona E, Rapoport M. Increased ERK and JNK activities correlate with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis. 2010;69:175-80 pubmed publisher
  482. Lee J, Kang M, Jang S, Qian T, Kim H, Kim C, et al. Id-1 activates Akt-mediated Wnt signaling and p27(Kip1) phosphorylation through PTEN inhibition. Oncogene. 2009;28:824-31 pubmed publisher
  483. Bajova H, Nelson T, Gruol D. Chronic CXCL10 alters the level of activated ERK1/2 and transcriptional factors CREB and NF-kappaB in hippocampal neuronal cell culture. J Neuroimmunol. 2008;195:36-46 pubmed publisher
  484. Søland T, Husvik C, Koppang H, Boysen M, Sandvik L, Clausen O, et al. A study of phosphorylated ERK1/2 and COX-2 in early stage (T1-T2) oral squamous cell carcinomas. J Oral Pathol Med. 2008;37:535-42 pubmed publisher
  485. Rauh Adelmann C, Moskow J, Graham J, Yen L, Boucher J, Murphy C, et al. Quantitative measurement of epidermal growth factor receptor-mitogen-activated protein kinase signal transduction using a nine-plex, peptide-based immunoassay. Anal Biochem. 2008;375:255-64 pubmed publisher
  486. Klees R, Salasznyk R, Ward D, Crone D, Williams W, Harris M, et al. Dissection of the osteogenic effects of laminin-332 utilizing specific LG domains: LG3 induces osteogenic differentiation, but not mineralization. Exp Cell Res. 2008;314:763-73 pubmed publisher
  487. Lefloch R, Pouyssegur J, Lenormand P. Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol. 2008;28:511-27 pubmed
  488. Kunath T, Saba El Leil M, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895-902 pubmed
  489. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  490. Salasznyk R, Klees R, Boskey A, Plopper G. Activation of FAK is necessary for the osteogenic differentiation of human mesenchymal stem cells on laminin-5. J Cell Biochem. 2007;100:499-514 pubmed
  491. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  492. Hao H, Schwaber J. Epidermal growth factor receptor induced Erk phosphorylation in the suprachiasmatic nucleus. Brain Res. 2006;1088:45-8 pubmed
  493. Carulli M, Ong V, Ponticos M, Shiwen X, Abraham D, Black C, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52:3772-82 pubmed
  494. Riemenschneider M, Mueller W, Betensky R, Mohapatra G, Louis D. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation. Am J Pathol. 2005;167:1379-87 pubmed
  495. Auger R, Motta I, Benihoud K, Ojcius D, Kanellopoulos J. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem. 2005;280:28142-51 pubmed
  496. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  497. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  498. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  499. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  500. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  501. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  502. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  503. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  504. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed